# RAPPORT DES TRAVAUX DE FORAGE PHASE 2 ET 3 SUR LA PROPRIÉTÉ MONTVIEL

### Secteur Lebel-sur-Quévillon, Québec

Septembre 2014 St-Lambert, Québec

Alain Cayer, Geo., MSc. OGQ #0569 Mia Pelletier, Geo., MSc. OGQ #1405



#### Table des matières

| 1. Résumé                                                                            | 1            |
|--------------------------------------------------------------------------------------|--------------|
| 2. Introduction                                                                      | 2            |
| 2.1 Généralité                                                                       | 2            |
| 2.2 Terme de référence                                                               | 2            |
| 3. Accessibilité, climat, géographie physique, infrastructures et ressources locales | 3            |
| 3.1 Accessibilité                                                                    | 3            |
| 3.2 Climat                                                                           |              |
| 3.3 Infrastructure et Ressources locales                                             |              |
| 3.4 Géographie physique                                                              |              |
| 4. Description de la propriété                                                       | <del>(</del> |
| 5. Historique des travaux                                                            | 10           |
| 6. Contexte Géologique                                                               | 13           |
| 6.1 Contexte géologique régionale                                                    | 13           |
| 6.2 Contexte géologique locale                                                       | 16           |
| 6.3 Géologie de la carbonatite                                                       | 19           |
| 6.4 Minéralogie et distribution des ÉTR                                              | 22           |
| 7. Type de gisement                                                                  | 23           |
| 8. Campagne de Forages                                                               | 24           |
| 8.1 Ferrocarbonatite                                                                 | 28           |
| 8.2 Exploration                                                                      | 31           |
| 8.3 Terres rares lourdes                                                             | 32           |
| 8.4 Phase 3 - Zone à terres rares lourdes "HREE-S"                                   | 33           |
| 9. Méthode d'analyse et vérification                                                 | 37           |
| 10. Interprétation et conclusion                                                     | 38           |
| 11. Recommandation                                                                   | 39           |
| 12. Signatures                                                                       | 40           |
| 13. Références                                                                       | 41           |
|                                                                                      |              |



### Listes des figures et tableaux

| Tableau 1 : Liste des abréviations et symboles                                                                           | 3  |
|--------------------------------------------------------------------------------------------------------------------------|----|
| Tableau 2 : Liste des éléments d'intérêts, facteur de conversion et classification                                       | 3  |
| Tableau 3 : Listes des titres miniers                                                                                    | 8  |
| Tableau 4 : Liste des travaux historiques                                                                                | 11 |
| Tableau 5 : Données techniques des campagnes de forages de la propriété Montviel                                         | 27 |
| Tableau 6 : Données techniques des forages des campagnes Phase 2 et 3                                                    | 27 |
| Tableau 7 : Données techniques des forages annulés ou abandonnés des campagnes Phase 2 e                                 |    |
| Table 8 : Résumé des intersections minéralisées dans la Ferrocarbonatite (zone Noyau et Est) c<br>campagnes Phase 2 et 3 |    |
| Tableau 9 : Résumé des intersections minéralisées en terres rares dans les cibles d'exploration la Phase 2               |    |
| Tableau 10 : Résumé des principales intersections minéralisées en terres rares lourdes des campagnes Phase 1 et 2.       | 32 |
| Tableau 11 : Résumé des intersections minéralisées en terres rares lourdes de la campagne de forage Phase 3              |    |
| Figure 1 : Montviel - Localisation                                                                                       | 5  |
| Figure 2 : Montviel – Titres Miniers                                                                                     | 7  |
| Figure 3 : Montviel - Géologie Régionale                                                                                 | 15 |
| Figure 4 : Montviel - Géologie Locale                                                                                    | 18 |
| Figure 5 : Géologie de la Carbonatite Montviel                                                                           | 20 |
| Figure 6 : Localisation des forages des Phase 1, 2 et 3                                                                  | 26 |
| Figure 7 : Géologie et Forages de la zone de la zone HREE-S                                                              | 35 |
| Figure 8 : Coupe Longitudinale de la zone HREE-S                                                                         | 36 |



#### 1. Résumé

La propriété Montviel est localisée dans le territoire de la Baie-James, au Québec, à 93km au nord de la ville de Lebel-sur-Quévillon et 45 km à l'ouest de la communauté Crie de Waswanipi. La propriété est constituée de 189 cellules désignées sur cartes, couvrant 10 497,95 ha. Elle est détenue à 100% par Ressources Géoméga inc mais est assujettie à une redevance de 2% sur le produit net à la Corporation minière Niogold.

La propriété est localisée dans la sous-province géologique de l'Abitibi à proximité du contact avec la sous-province de l'Opatica. La sous-province de l'Abitibi est un ensemble de roche volcanique, sédimentaire et plutonique daté de 2791 à 2696 Ma qui ont été déformé par l'orogénèse Kenoréenne (2720 à 2760 Ma). Le faciès métamorphique varie des schistes verts à celui des amphibolites. L'intrusion alcaline de Montviel, daté à 1894 ±4 (David et al., 2006), s'est mise en place dans la tonalite de Nomans, daté à 2708,9 Ma (Goutier, 2006) qui est très déformé et représente une fenêtre exposée au centre d'une structure en dôme. L'intrusion alcaline, plus jeune est faiblement métamorphisée et très peu déformée. La carbonatite de Montviel qui contient les minéralisations en terres rares est localisée au centre de l'intrusion alcaline. Elle a une superficie de 2,76 km2 et elle présente plusieurs faciès distincts de ferrocarbonatite, calciocarbonatite et sillicocarbonatite. Les fluorocarbonates de terres rares sont les phases minéralisées que l'on retrouve principalement dans la ferrocarbonatite.

Ce rapport a pour but de présenter les travaux de deux campagnes de forages (Phase 2 et 3) effectués sur la propriété de septembre 2011 à décembre 2013 et il servira de rapport statutaire en vue du renouvellement des titres miniers. La campagne de forages Phase 2 comprend, 56 forages pour 24 324 mètres et avait pour mandat de poursuivre l'investigation de la ferrocarbonatite qui fut mise à jour lors de la précédente campagne. Elle a aussi défini, à une maille de 50 mètres, le secteur ouest de la ferrocarbonatite (zone "Noyau").

Cette campagne a permis de mettre à jour et de définir la zone Noyau d'une puissance approximative de près de 150 mètres (Est-Ouest) par 400 mètres (Nord-Sud). En surface, elle longe sur quelques centaines de mètres, le contact ouest de la ferrocarbonatite/silicocarbonatite. Parmi les meilleures intersections, on note : le forage MVL-11-26 (7+25W) qui a titré 1,80% OTRT sur 430,70 mètres, le forage MVL-11-32D (6+80W) qui a titré 1,87% OTRT sur 319,40 mètres, le forage MVL-12-55 (5+90W) qui a titré 2,20% OTRT sur 367,50 mètres et le forage MVL-12-61 (5+45W) qui a titré 1,90% OTRT sur 456,00 mètres. Cette zone comprend aussi les meilleures intersections en niobium : le forage MVL-12-59b (6+80W) qui a titré 1,38% oxyde de niobium sur 95,50 mètres et le forage MVL-12-62 (6+35W) qui a titré 0,93% oxyde de niobium sur 21,00 mètres. Le forage MVL-11-37b a intersecté la minéralisation en terres rares sur 780,00 mètres avec une teneur de 1,62% OTRT. Il a été arrêté à une profondeur de 921 mètres (770 mètres verticale) dans la ferrocarbonatite, la minéralisation était toujours présente. La définition de cette zone Noyau a aussi permis de mettre à jour deux (2) zones enrichies en terres rares lourdes, dont une ("HREE-S") qui est localisée à l'éponte sud de la ferrocarbonatite. Le forage MVL-11-30 a intersecté cette zone à une profondeur verticale de 100m (147 ppm Dy<sub>2</sub>O<sub>3</sub> et 101 Eu<sub>2</sub>O<sub>3</sub> sur 57.5m, 1% OTRT), le forage MVL-11-36 a intersecté cette zone au collet (108 ppm Dy<sub>2</sub>O<sub>3</sub> sur 36m, 0.85% OTRT).

Une nouvelle campagne de 7 forages, Phase 3 (2061 mètres), a défini la zone HREE-S sur 350 mètres (est-ouest) par 230 mètres vertical avec plus de 20 mètres de puissance réelle. Parmi les meilleures intersections minéralisées, on note : le forage MVL-13-78 qui a titré 170 ppm  $Dy_2O_3$  et 118 ppm  $Eu_2O_3$  sur 27,35 mètres incluant 830 ppm  $Dy_2O_3$ , 230 ppm  $Eu_2O_3$  et 172 ppm Tb2O3 sur 1,50 mètre.

La mise à jour de la zone Noyaux, de la zone HREE-S et des diverses intersections isolées enrichies en terre rares lourdes démontrent le potentiel de la carbonatite, mais aussi du complexe alcalin, pour de nouvelles zones à terres rares lourdes. La poursuite de l'investigation et de la définition, au 50 mètres, des deux zones, Nord et Sud (HREE-S) permettrait d'en établir les ressources. Cette investigation pourrait s'étendre à l'intrusion alcaline, qui a révélé aussi une intersection de 103 ppm Dy203 sur 18,90 mètres (ouvert) et qui se retrouve à 800 mètres de la ferrocarbonatite.



#### 2. Introduction

#### 2.1 Généralité

Ce document agit en tant que rapport statutaire en vue du renouvellement des titres miniers. Il comprend une mise à jour sommaire des informations scientifiques et techniques relatives aux campagnes de forages de la Phase 2 et 3 qui ont été réalisés entre septembre 2011 et décembre 2013 sur la propriété Montviel. La propriété est détenue à 100% par Ressources Géoméga mais assujetti à 2% de redevance sur le produit net à Niogold.

Les informations techniques et géologiques ainsi que les résultats d'analyses des campagnes de forages Phase 2 et 3 ont servi à la rédaction de ce rapport. Le rapport comprend une revue des travaux historique, les développements au niveau géologique, les résultats de forages, et la description des méthodes de préparation et d'analyses des échantillons. Les journaux de sondages sont disponibles en annexe II, et les certificats d'analyse sont disponibles en annexe III.

#### 2.2 Terme de référence

Alain Cayer, Geo., MSc., membre de l'Ordre des Géologues du Québec, #0569 et Mia Pelletier, Geo., MSc., membre de l'Ordre des Géologues du Québec, # 1405, sont les auteurs de ce rapport. M. Cayer, vice-président exploration pour Ressources Géoméga, était présent au camp Montviel durant les deux campagnes de forages et a supervisé tous les travaux d'exploration. M. Cayer est la personne qualifiée pour le projet Montviel. Mme Pelletier, géologue pour Ressources Géoméga était elle aussi présente au camp durant les deux campagnes de forages et elle a participé aux caractérisations des forages et à la supervision des aspects techniques des campagnes. "La propriété" fait référence à la propriété Montviel.

Toutes les mesures dans ce rapport sont présentées en unité du système international incluant les distances en mètre (m), ou kilomètres (km), l'hectare (ha) pour les superficies, et les mètres cubes (m³) pour les volumes. Les abréviations utilisées sont présentées dans le tableau 1. Le tableau 2 présente les différents éléments de terres rares et éléments d'intérêts avec leurs facteurs de conversions en oxyde ainsi que leur classification en tant que terre rare légère, moyenne ou lourde.



Tableau 1 : Liste des abréviations et symboles

| Abréviation | Description                                  |
|-------------|----------------------------------------------|
| ppm         | Partie Par Million                           |
| mm          | Millimiètre                                  |
| dm          | Décimètre                                    |
| m           | Mètre                                        |
| km          | Kilomètre                                    |
| ha          | Hectare                                      |
| NAD         | North American Datum                         |
| UTM         | Universal Transverse Mercaptor               |
| SNRC        | Système National de Référence Cartographique |
| \$          | Dollar Canadian                              |
| %           | Pourcentage                                  |
| °C          | Degré Celcius                                |
| 0           | Degré                                        |
| NQ          | Diamètre de carotte (4,8 cm)                 |
| Ma          | Million d'années                             |
| Ga          | Milliard d'années                            |
| ETR         | Élément de Terres Rares                      |
| OTRML       | Oxyde de Terres Rares Moyennes et Lourdes    |
| OTRT        | Oxyde de Terres Rares Totales                |

Tableau 2 : Liste des éléments d'intérêts, facteur de conversion et classification

| Nom        | Symbole | Oxyde | Facteur de conversion | Sous-Groupe                      | Groupe |
|------------|---------|-------|-----------------------|----------------------------------|--------|
| Lanthane   | La      | La2O3 | 1,1728                |                                  |        |
| Cérium     | Ce      | Ce2O3 | 1,1713                | Oxyde de terres                  |        |
| Praséodyme | Pr      | Pr2O3 | 1,1703                | rares légères                    |        |
| Néodyme    | Nd      | Nd2O3 | 1,1664                |                                  |        |
| Samarium   | Sm      | Sm2O3 | 1,1596                | Outdo do tomos                   |        |
| Europium   | Eu      | Eu2O3 | 1,1579                | Oxyde de terres                  |        |
| Gadolinium | Gd      | Gd2O3 | 1,1526                | rares moyennes                   |        |
| Terbium    | Tb      | Tb2O3 | 1,1510                |                                  | OTRT   |
| Dysprosium | Dy      | Dy2O3 | 1,1477                |                                  |        |
| Holmium    | Но      | Ho2O3 | 1,1455                | 0                                |        |
| Erbium     | Er      | Er2O3 | 1,1435                | Oxyde de terres<br>rares lourdes |        |
| Thulium    | Tm      | Tm2O3 | 1,1421                | rares iourdes                    |        |
| Ytterbium  | Yb      | Yb2O3 | 1,1387                |                                  |        |
| Lutetium   | Lu      | Lu2O3 | 1,1372                |                                  |        |
| Yttrium    | Υ       | Y2O3  | 1,2699                | Métaux de                        |        |
| Niobium    | Nb      | Nb205 | 1,4305                | transition                       |        |
| Phophore   | Р       | P2O5  | 2,2916                | Non Métal                        |        |

# 3. Accessibilité, climat, géographie physique, infrastructures et ressources locales

#### 3.1 Accessibilité

La propriété est accessible à partir de la route régionale 113, puis en empruntant le chemin forestier 1018 (au km 166 de la 113) sur une distance de 60 km. Le chemin 1018 est un chemin forestier majeur qui se sépare en un



réseau de chemins forestiers secondaires et qui permet de se rendre directement aux différents secteurs de la propriété. Le chemin forestier 1018 est également accessible depuis la communauté autochtone Waswanipi par le chemin X110, communément surnommé la « traverse de Waswanipi ».

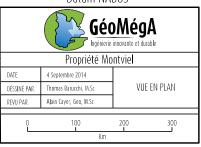
#### 3.2 Climat

Le secteur se situe à la limite entre les climats subarctique et humide continentaux. Cette zone climatique est caractérisée par de longs hivers froids et par des étés courts. La température moyenne quotidienne varie de -20 °C en janvier à + 16 °C en juillet. La fonte se produit généralement au début d'avril et le gèle en octobre ou novembre. Ces conditions climatiques sont normales pour le secteur sud de la Baie-James où des travaux d'exploration ont lieu tout au long de l'année.

#### 3.3 Infrastructure et ressources locales

Il n'y a pas d'infrastructure minière sur la propriété, cependant un camp pouvant accueillir 20 travailleurs est situé à moins de 2 km de la grille de forage. un camp forestier nommé « le camp Maicasagi » est situé près de la limite sud de la propriété aux coordonnées UTM NAD 83 suivantes : 389,360E/5,515,625N. L'équipement, les services et la main-d'œuvre nécessaire au développement d'un projet minier sont disponibles à Lebel-sur-Quévillon à environ 110 km au sud-sud-ouest par route 1018 et 113, ou à Val d' Or à 270 km. Une ligne électrique est présente à 50 km au sud de la propriété le long de la route 113.

#### 3.4 Géographie physique


La propriété présente une topographie relativement plane, variant de 280 m à 315 m au-dessus du niveau de la mer. L'élévation moyenne est d'approximativement 290 m. La principale caractéristique hydrographique est la rivière Nomans, qui traverse la propriété dans une direction SO-NE. Elle s'écoule vers le NE, où elle se joint à la rivière Inconnue, puis la rivière Maicasagi et ultimement, le lac Maicasagi. Elle se situe à plus de 500 m de la limite interprétés de la carbonatite minéralisée. La propriété est recouverte d'un mélange de marais et de forêt, la forêt étant principalement composée d'épinettes noires. Une partie de la propriété a déjà été exploitée pour le bois, il y a de cela plusieurs années. La zone centrale où repose la carbonatite n'affleure pas et est recouverte de dépôt meuble. Tel qu'observé dans les forages, l'épaisseur des dépôts meubles varie de 20 mètres jusqu'à un maximum vertical de profondeur pouvant aller jusqu'à 40 mètres. Cependant cette couche de dépôt glaciaire (till), est généralement inférieure à 35 m au-dessus de la zone minéralisée. En se déplaçant vers l'ouest, on observe une importante couche d'argile (dépôts glacio-lacustres) pouvant atteindre plus de 10 mètres d'épaisseur. La présence de pergélisol n'est pas observée à cette latitude.



### FIGURE 1: MONTVIEL - LOCALISATION



Projection conique conforme de Lambert Datum NAD83



#### 4. Description de la propriété

La propriété Montviel est localisée à 215 km au nord-nord-est de la ville de Val-d'Or, à 93 km au nord-nord-est de la ville de Lebel-sur-Quévillon et à 45 km à l'ouest de la communauté autochtone de Waswanipi. Géographiquement, la propriété se situe dans les feuillets SNRC 32F15 et 32F16, et est centrée sur les coordonnées UTM NAD 83 : 389,530E/5, 521,970N. La propriété Monviel est située principalement dans le canton de Montviel, l'extrémité nord est située dans le canton d'Urfé.

La propriété Montviel est constituée d'un bloc de 189 claims qui recouvre une superficie de 10497,95 ha. La liste des titres miniers est disponible dans le tableau 3.

Tous les titres miniers contenus au sein de la propriété Montviel sont détenus à 100 % par Géoméga et ont une redevance sur le produit net de 2 ou 3 %. La partie centrale de la propriété, incluant les titres miniers qui contiennent les ressources estimées, était anciennement détenue par la corporation minière Niogold ("Niogold"). Ces titres miniers sont illustrés en vert dans la figure 2. Niogold retient une redevance de 2 % sur le produit net sans droit de rachats. Lorsque 70 % du capital requis pour une production commerciale sera fixé, comme spécifié dans une éventuelle étude de faisabilité pour la propriété Montviel, Géoméga devra payer 4 500 000 \$ à Niogold. Ce paiement, au choix de Niogold, se fera en argent comptant ou en actions ordinaires. Ce montant sera traité comme un paiement en avance, non remboursable, sur la redevance.

Une série de titres miniers ont été jalonnés conjointement par Géoméga et Niogold. Ces titres miniers, identifiés en jaune sur la figure 2, sont sujets à la même redevance de 2 % sur le produit net décrite ici haut. En mars 2011, plusieurs titres miniers ont été optionné de Pierre Perron et Fan Wen. Ces titres sont identifiés en bleu dans la figure 2. Ces titres miniers sont sujets à une redevance sur le produit net de 1 % à Niogold et de 2 % à Fan Wen ou Pierre Perron.

La propriété englobe deux blocs de claims n'appartenant pas à Géoméga. Les blocs, ont été jalonnés par Zimtu Capital Corp. et Glenn Grieshbach. Ces titres miniers ont été optionné en janvier 2011 par Canada Rare Earths inc. Ces titres miniers, sont laissés en blanc sur la figure 2. Une carbonatite a été identifiée sur ces cellules à partir de forages historiques. Canada Rare Earths inc. a effectué des travaux sur ces cellules en 2011-2012, mais aucun résultat d'analyse ou rapport de travaux ne sont disponible. Cependant, sur le site web de Canada Rare Earths Corp. (www.canadarareearths.com), on ne fait plus mention de projet situé au Québec. Il semble que la propriété ait été abandonnée. Bien que d'autres titres miniers soient adjacents à la propriété Montviel, ils ne sont pas d'une importance significative due au contexte géologique.

Il n'y a pas de litige ou de passif environnemental relié au projet.



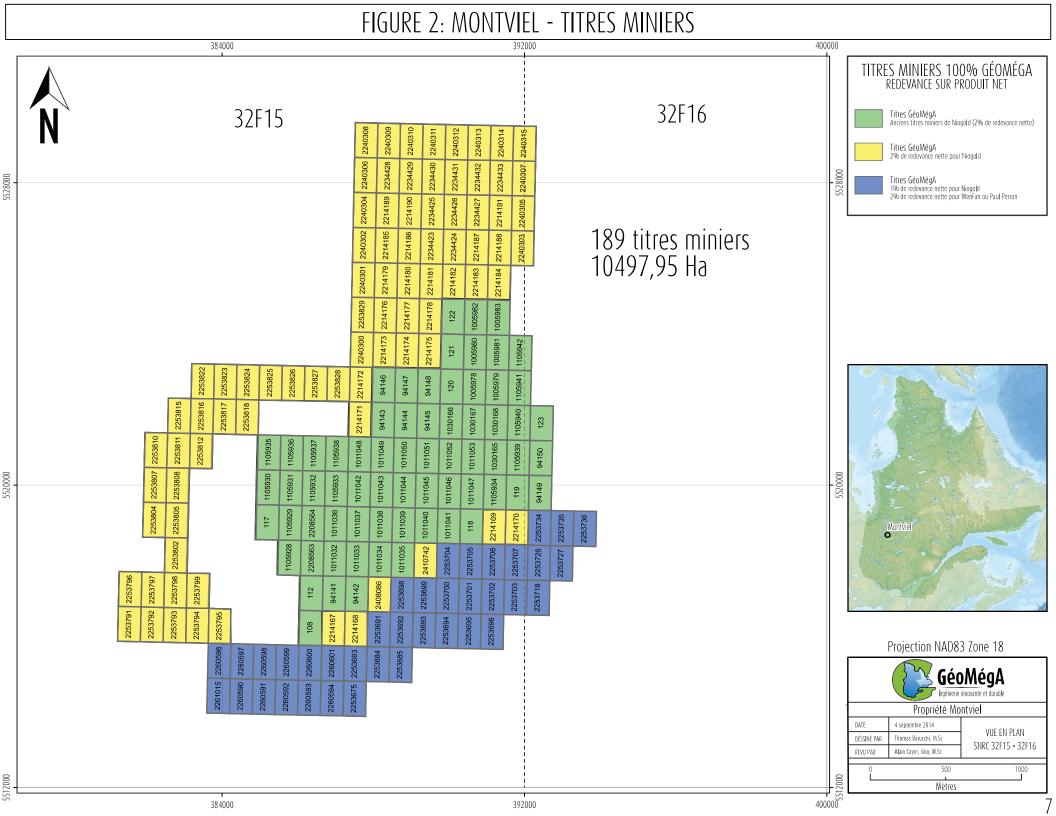



Tableau 3 : Liste des titres miniers

| Titre   | Superficie (ha) | Date d'acquisition | Titre   | Superficie (ha) | Date d'acquisition |
|---------|-----------------|--------------------|---------|-----------------|--------------------|
| 108     | 55.59           | 2003-07-18         | 1030167 | 55.54           | 2001-10-12         |
| 112     | 55.58           | 2003-07-18         | 1030168 | 55.54           | 2001-10-12         |
| 117     | 55.57           | 2003-07-18         | 1105928 | 55.58           | 2002-12-02         |
| 118     | 55.56           | 2003-07-18         | 1105929 | 55.57           | 2002-12-02         |
| 119     | 55.55           | 2003-07-18         | 1105930 | 55.56           | 2002-12-02         |
| 120     | 55.53           | 2003-07-18         | 1105931 | 55.56           | 2002-12-02         |
| 121     | 55.52           | 2003-07-18         | 1105932 | 55.56           | 2002-12-02         |
| 122     | 55.51           | 2003-07-18         | 1105933 | 55.56           | 2002-12-02         |
| 123     | 55.54           | 2003-07-21         | 1105934 | 55.56           | 2002-12-02         |
| 94141   | 55.58           | 2005-09-15         | 1105935 | 55.55           | 2002-12-02         |
| 94142   | 55.58           | 2005-09-15         | 1105936 | 55.55           | 2002-12-02         |
| 94143   | 55.54           | 2005-09-15         | 1105937 | 55.55           | 2002-12-02         |
| 94144   | 55.54           | 2005-09-15         | 1105938 | 55.55           | 2002-12-02         |
| 94145   | 55.54           | 2005-09-15         | 1105939 | 55.55           | 2002-12-02         |
| 94146   | 55.53           | 2005-09-15         | 1105940 | 55.54           | 2002-12-02         |
| 94147   | 55.53           | 2005-09-15         | 1105941 | 55.53           | 2002-12-02         |
| 94148   | 55.53           | 2005-09-15         | 1105942 | 55.52           | 2002-12-02         |
| 94149   | 55.55           | 2005-09-15         | 2208563 | 55.58           | 2010-03-08         |
| 94150   | 55.55           | 2005-09-15         | 2208564 | 55.57           | 2010-03-08         |
| 1005978 | 55.53           | 2001-04-04         | 2214167 | 55.59           | 2010-04-15         |
| 1005979 | 55.53           | 2001-04-04         | 2214168 | 55.59           | 2010-04-15         |
| 1005980 | 55.52           | 2001-04-04         | 2214169 | 55.56           | 2010-04-15         |
| 1005981 | 55.52           | 2001-04-04         | 2214170 | 55.56           | 2010-04-15         |
| 1005982 | 55.51           | 2001-04-04         | 2214171 | 55.54           | 2010-04-15         |
| 1005983 | 55.51           | 2001-04-04         | 2214172 | 55.53           | 2010-04-15         |
| 1011032 | 55.58           | 2001-06-05         | 2214173 | 55.52           | 2010-04-15         |
| 1011033 | 55.58           | 2001-06-05         | 2214174 | 55.52           | 2010-04-15         |
| 1011034 | 55.57           | 2001-06-05         | 2214175 | 55.52           | 2010-04-15         |
| 1011035 | 55.57           | 2001-06-05         | 2214176 | 55.51           | 2010-04-15         |
| 1011036 | 55.57           | 2001-06-05         | 2214177 | 55.51           | 2010-04-15         |
| 1011037 | 55.57           | 2001-06-05         | 2214178 | 55.51           | 2010-04-15         |
| 1011038 | 55.57           | 2001-06-05         | 2214179 | 55.5            | 2010-04-15         |
| 1011039 | 55.57           | 2001-06-05         | 2214180 | 55.5            | 2010-04-15         |
| 1011040 | 55.57           | 2001-06-05         | 2214181 | 55.5            | 2010-04-15         |
| 1011041 | 55.56           | 2001-06-05         | 2214182 | 55.5            | 2010-04-15         |
| 1011042 | 55.56           | 2001-06-05         | 2214183 | 55.5            | 2010-04-15         |
| 1011043 | 55.56           | 2001-06-05         | 2214184 | 55.5            | 2010-04-15         |
| 1011044 | 55.56           | 2001-06-05         | 2214185 | 55.49           | 2010-04-15         |
| 1011045 | 55.56           | 2001-06-05         | 2214186 | 55.49           | 2010-04-15         |
| 1011045 | 55.56           | 2001-06-05         | 2214187 | 55.49           | 2010-04-15         |
| 1011047 | 55.56           | 2001-06-05         | 2214188 | 55.49           | 2010-04-15         |
| 1011047 | 55.55           | 2001-06-05         | 2214189 | 55.48           | 2010-04-15         |
| 1011049 | 55.55           | 2001-06-05         | 2214190 | 55.48           | 2010-04-15         |
| 1011049 | 55.55           | 2001-06-05         | 2214191 | 55.48           | 2010-04-15         |
| 1011050 | 55.55           | 2001-06-05         | 2225613 | 55.58           | 2014-06-02         |
| 1011051 | 55.55           | 2001-06-05         | 2228045 | 55.57           | 2014-06-04         |
| 1011052 | 55.55           | 2001-06-05         | 2234423 | 55.49           | 2010-05-19         |
| 1030165 | 55.55           | 2001-00-03         | 2234424 | 55.49           | 2010-05-19         |
| 1030165 | 55.54           | 2001-10-12         | 2234425 | 55.48           | 2010-05-19         |
| 1020100 | 55.54           | 2001-10-12         | 2234425 | 55.48           | 2010-02-19         |



| Titre   | Superficie (ha) | Date d'acquisition | Titre   | Superficie (ha) | Date d'acquisition |
|---------|-----------------|--------------------|---------|-----------------|--------------------|
| 2234426 | 55.48           | 2010-05-19         | 2253727 | 55.57           | 2010-10-13         |
| 2234427 | 55.48           | 2010-05-19         | 2253734 | 55.56           | 2010-10-13         |
| 2234428 | 55.47           | 2010-05-19         | 2253735 | 55.56           | 2010-10-13         |
| 2234429 | 55.47           | 2010-05-19         | 2253736 | 55.56           | 2010-10-13         |
| 2234430 | 55.47           | 2010-05-19         | 2253791 | 55.6            | 2010-10-13         |
| 2234431 | 55.47           | 2010-05-19         | 2253792 | 55.6            | 2010-10-13         |
| 2234432 | 55.47           | 2010-05-19         | 2253793 | 55.6            | 2010-10-13         |
| 2234433 | 55.47           | 2010-05-19         | 2253794 | 55.6            | 2010-10-13         |
| 2240300 | 55.52           | 2010-07-12         | 2253795 | 55.6            | 2010-10-13         |
| 2240301 | 55.5            | 2010-07-12         | 2253796 | 55.59           | 2010-10-13         |
| 2240302 | 55.49           | 2010-07-12         | 2253797 | 55.59           | 2010-10-13         |
| 2240303 | 55.49           | 2010-07-12         | 2253798 | 55.59           | 2010-10-13         |
| 2240304 | 55.48           | 2010-07-12         | 2253799 | 55.59           | 2010-10-13         |
| 2240305 | 55.48           | 2010-07-12         | 2253802 | 55.58           | 2010-10-13         |
| 2240306 | 55.47           | 2010-07-12         | 2253804 | 55.57           | 2010-10-13         |
| 2240307 | 55.47           | 2010-07-12         | 2253805 | 55.57           | 2010-10-13         |
| 2240308 | 55.46           | 2010-07-12         | 2253807 | 55.56           | 2010-10-13         |
| 2240309 | 55.46           | 2010-07-12         | 2253808 | 55.56           | 2010-10-13         |
| 2240310 | 55.46           | 2010-07-12         | 2253810 | 55.55           | 2010-10-13         |
| 2240311 | 55.46           | 2010-07-12         | 2253811 | 55.55           | 2010-10-13         |
| 2240312 | 55.46           | 2010-07-12         | 2253812 | 55.55           | 2010-10-13         |
| 2240313 | 55.46           | 2010-07-12         | 2253815 | 55.54           | 2010-10-13         |
| 2240314 | 55.46           | 2010-07-12         | 2253816 | 55.54           | 2010-10-13         |
| 2240315 | 55.46           | 2010-07-12         | 2253817 | 55.54           | 2010-10-13         |
| 2253675 | 55.61           | 2010-10-13         | 2253818 | 55.54           | 2010-10-13         |
| 2253683 | 55.6            | 2010-10-13         | 2253822 | 55.53           | 2010-10-13         |
| 2253684 | 55.6            | 2010-10-13         | 2253823 | 55.53           | 2010-10-13         |
| 2253685 | 55.6            | 2010-10-13         | 2253824 | 55.53           | 2010-10-13         |
| 2253691 | 55.59           | 2010-10-13         | 2253825 | 55.53           | 2010-10-13         |
| 2253692 | 55.59           | 2010-10-13         | 2253826 | 55.53           | 2010-10-13         |
| 2253693 | 55.59           | 2010-10-13         | 2253827 | 55.53           | 2010-10-13         |
| 2253694 | 55.59           | 2010-10-13         | 2253828 | 55.53           | 2010-10-13         |
| 2253695 | 55.59           | 2010-10-13         | 2253829 | 55.51           | 2010-10-13         |
| 2253696 | 55.59           | 2010-10-13         | 2260590 | 55.61           | 2010-11-15         |
| 2253698 | 55.58           | 2010-10-13         | 2260591 | 55.61           | 2010-11-15         |
| 2253699 | 55.58           | 2010-10-13         | 2260592 | 55.61           | 2010-11-15         |
| 2253700 | 55.58           | 2010-10-13         | 2260593 | 55.61           | 2010-11-15         |
| 2253701 | 55.58           | 2010-10-13         | 2260594 | 55.61           | 2010-11-15         |
| 2253702 | 55.58           | 2010-10-13         | 2260596 | 55.6            | 2010-11-15         |
| 2253703 | 55.58           | 2010-10-13         | 2260597 | 55.6            | 2010-11-15         |
| 2253704 | 55.57           | 2010-10-13         | 2260598 | 55.6            | 2010-11-15         |
| 2253705 | 55.57           | 2010-10-13         | 2260599 | 55.6            | 2010-11-15         |
| 2253706 | 55.57           | 2010-10-13         | 2260600 | 55.6            | 2010-11-15         |
| 2253707 | 55.57           | 2010-10-13         | 2260601 | 55.6            | 2010-11-15         |
| 2253718 | 55.58           | 2010-10-13         | 2261015 | 55.61           | 2010-11-19         |
| 2253726 | 55.57           | 2010-10-13         | 2408086 | 55.58           | 2010-05-03         |



#### 5. Historique des travaux

Le secteur a été visité pour la première fois en 1895 par Robert Bell de la Commission Géologique du Canada (CGC), suivi de Bancroft en 1912, Cooke en 1927, Lang en 1932, Norman en 1937 et Freeman en 1938.

En 1949, P.E Imbeault produit la première carte géologique du secteur au nom du Département des Mines du Québec.

Les prochains travaux de cartographie régionale ont été effectués par Goutier en 2005 (Goutier, 2006). C'est ici, pour la première fois, que le contour de l'intrusion alcaline a clairement été établi. Par la suite, David et al. (2006) ont daté l'intrusion à 1894+ 4 Ma.

La première campagne d'exploration par une compagnie minière a été effectuée par Jowsey Mining en 1958. Des levés géophysiques ont révélé plusieurs anomalies qui ont été testées par trois forages totalisant 588,7 m. Des carbonates, décrits comme étant des calcaires recristallisés, ont été intersectés. Les anomalies géophysiques ont été expliquées par de minces sections de pyrite-pyrrhotite et/ou de graphite. Aucun résultat d'analyse n'a été rapporté.

Les travaux d'exploration on reprit en 1973, lorsque Duval International Corp. a complété un levé aéroporté Dighem (Mag et EM) suivit de travaux au sol, incluant l'échantillonnage de till de base, du forage au diamant et la réanalyse des carottes de forages de Jowsey Mining. Des valeurs allant jusqu'à 0,27 % Nb205 sur 3 m ont été obtenues. En 1976, la Société de développement de la Baie James (« SDBJ ») et la Duval International Corp. ont formé un partenariat, qui a effectué 20 forages totalisant 2,589 m de 1977 à 1979. Les meilleurs résultats sont de 0,68 % Nb205 sur 1,5 (forage 79-1). Le partenariat Duval/SDBJ demeure actif jusqu'en 1981 et possiblement au-delà; cependant aucun forage additionnel n'a été rapporté.

En 2002, Ressources Nomans a entrepris un programme d'exploration incluant 13,3 km de coupe de ligne suivit de 13,9 km de levé EM au sol (HLEM). On effectue 8 forages totalisant 1245,5 m afin de valider les résultats obtenus préalablement par le partenariat Duval/SDBJ, c'est-à-dire confirmer les intersections en  $Nb_2O_5$  (forage 77-1, 79-1 et 79-3). Les résultats dépassent les attentes.

En 2002, la propriété est optionnée par Niogold. Entre 2002 et 2010, Niogold a complété des levés aéroportés EM, magnétique, et radiométrique, suivit d'une cartographie géologique limitée, de prospection au sol et d'un levé de sol MMI (Mobil Metal Ion). Le levé aéroporté délimite le secteur de l'intrusion alcaline.

En 2010, Géoméga signe une entente avec Niogold permettant d'obtenir 100 % de la propriété Montviel. Une campagne de 20 forages totalisant 10 065 m (Phase 1) est ensuite lancée en décembre 2010. Cette campagne de forages a permis de délimiter la zone centrale de la ferrocarbonatite. En septembre 2011, SGS Canada inc. a complété un rapport NI 43-101 incluant un calcul de ressource initiale de la zone centrale de Montviel.

De septembre 2011 à mars 2012, on effectue 52 forages de définition supplémentaires (23 607 mètres de forages) sur la partie centrale afin d'étendre la zone des ressources indiquées (inclus dans le présent rapport).

Parallèlement, une nouvelle intrusion de carbonatite d'approximativement 2km² est définie sur la propriété Montviel



suite à un levé magnétique et spectrométrique héliporté, des travaux de prospection au sol et un levé pédogéochimique (MMI). Ces travaux vont mener à une campagne de forages exploratoires de 717 mètres avec 4 forages (Martel at al., 2012).

En novembre et décembre 2013, 7 forages (2061mètres) sont effectués au sud de l'intrusion afin de définir une zone à terres rares lourdes (inclus dans le présent rapport).

Tableau 4 : Liste des travaux historiques

| Année     | Compagnie et référence                   | Travaux effectués                                                                                                    | Résultats                                                                                                                            |  |  |
|-----------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1895-1938 | CGC et MRNQ                              | Visite du secteur par Bell,<br>Bancroft, Cooke, Lang,Norman<br>et Freeman.                                           | Reconnaissance géologique préliminaire                                                                                               |  |  |
| 1949      | Département des Mines Québec<br>- RP 231 | Cartographie du secteur à une<br>échelle de 1 mile = 1 pouce<br>(1 :63,360)                                          | La carbonatite de Montviel n'a<br>pas été observée.                                                                                  |  |  |
| 1958      | Jowsey Ltd - GM 07548-A                  | 18 miles de levé Turam<br>(anomalie EM)                                                                              | On identifie une zone anomale<br>de 3200 pieds par 700 pieds.<br>Forage recommandé.                                                  |  |  |
| 1958      | Jowsey Ltd - GM 07548-B                  | 6 Forages au diamant totalisant<br>588,7 m                                                                           | Formation de fer et <u>calcaires</u> <u>recristallisés</u> intersectés, conducteur Turam expliqué par pyrite-pyrrhotite et graphite. |  |  |
| 1973      | Duval International Corp GM<br>29954     | Levé aéroporté Dighem Mag et<br>EM                                                                                   | Rapport non déposé                                                                                                                   |  |  |
| 1975      | Duval International Corp GM<br>31071     | Levé au sol EM et Mag,<br>échantillonnage de till de base<br>et analyse de carottes de<br>forages (Jowsey, 1958).    | Meilleurs résultats de 0.27 %<br>Nb205 sur 3 m dans le forage<br>3B                                                                  |  |  |
| 1977      | Duval / SDBJ - GM 33767                  | 10 forages totalisant 1063,7 m                                                                                       | Meilleurs résultats de 0.26 %<br>Nb205 sr 13,4 m dans le forage<br>77-1.                                                             |  |  |
| 1979      | Duval / SDBJ - GM 34761                  | 10 forages totalisant 1525,6 m                                                                                       | Meilleurs résultats de 0.68 %<br>Nb205 sur 1,5 m dans 79-1 et<br>0.1 % Nb205 sur 91,4 m dans<br>le forage 79-3                       |  |  |
| 1979      | Shell Canada Ltee - GM 39043             | Rapport d'évaluation sur la carbonatite de Montviel                                                                  | Shell considère que l'U-Th sont<br>les cibles les plus prometteuses<br>sur la propriété.                                             |  |  |
| 1989      | Corporation Corona - GM 48820            | Jalonnement de 55 titres<br>miniers couvrant la partie<br>centrale de la carbonatite                                 | Compilation géologique et recherche des anciennes carottes de forages.                                                               |  |  |
| 1996      | Moorhead et coll.  MB 93-49              | Compilation des anomalies<br>aéromagnétique dans la sous-<br>province de l'Abitibi pour la<br>prospection au diamant | Identification d'une anomalie<br>magnétique circulaire dans la<br>portion Nord de la propriété<br>Montviel                           |  |  |



|           | Ressources Nomans                                               |                                                                                                                                |                                                                                                                                                  |
|-----------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 2001      | GM 59681                                                        | Rapport d'évaluation                                                                                                           | Forage recommandé                                                                                                                                |
| 2002      | Ressources Nomans GM 59646                                      | 13,3 km de coupe de lignes et<br>13,9 km de levé Max Min                                                                       | Zones conductrices identifiées à moins de 25 m de profondeur.                                                                                    |
| 2002      | Ressources Nomans<br>GM 59647                                   | 1245,5 m de forage (8 forages)                                                                                                 | Meilleurs résultats de 0,15 %<br>Nb205 sur 10,7 m dans DDH-1<br>et 0,27 % Nb205 sur 3 m dans<br>le forage DDH-3B.                                |
| 2003      | Corporation Minière NioGold                                     | Rapport technique sur le<br>complexe de carbonatite de<br>Montviel                                                             | Non soumis au MRNFQ                                                                                                                              |
| 2004      | Corporation Minière NioGold<br>GM 61778, GM 60881               | Levé aéroporté Dighem (EM,<br>Mag et radiométrique) Rapport<br>sur le levé aéroporté                                           | 6 anomalies magnétiques avec<br>signature kimberlitiques                                                                                         |
| 2005      | Corporation Minière NioGold<br>GM 62424                         | Analyse géochimique,<br>cartographie géologique,<br>prospection et programme<br>d'échantillonnage de sol (MMI<br>et Horizon-B) | 4 zones anomales sont interprétées, recommandation de faire 4 forages                                                                            |
| 2005      | Corporation Minière NioGold<br>GM 62438                         | Étude minéralogique sur les<br>forages de Nomans                                                                               | Description de la séquence<br>paragénétique                                                                                                      |
| 2006      | MRNFQ - RP 2006-04                                              | Plusieurs datations complétées<br>dans le secteur rapporté dans le<br>levé géologique RG 2005-05                               | Datation de la carbonatite de<br>Montviel 1894,2±3,5 Ma                                                                                          |
| 2008      | MRNFQ - RP 2008-02                                              | 3 datations additionnelles                                                                                                     | Datation de la tonalite de<br>Nomans, qui accueille le<br>complexe de carbonatite de<br>Montviel, à 2708,9 ± 1,2 Ma.                             |
| 2010-2011 | Ressourcrs Géoméga<br>GM 67805                                  | Géoméga optionne la propriété<br>de NioGold et complète 20<br>forages pour 10 065 m                                            | Découverte de la zone centrale<br>du complexe de carbonatite<br>Montviel                                                                         |
| 2011      | SGS Géostat pour le compte de<br>Ressources Géoméga<br>GM 67805 | Ressources estimées de la zone<br>centrale enrichie en terres rares<br>de Montviel, rapport technique<br>(43-101)              | Ressources minérales<br>indiquées : 183 900 000 tonnes<br>à 1,45 % TREO et Ressources<br>minérales inférées : 66 700 000<br>tonnes à 1,46 % TREO |
| 2011      | Géosig pour le compte de<br>Ressources Géoméga<br>GM 65807      | Levé gravimétrique et<br>magnétométrique au sol                                                                                | Définition de la signature de la<br>zone minéralisée Montviel                                                                                    |
| 2011      | Ressources Géoméga                                              | Prospection géologique et levé<br>pédogéochimique MMI                                                                          | 3 blocs anomaux en ETR, NB, Ba et P ainsi que des anomalies                                                                                      |



|           | GM 66395                                                       | (Montviel Exploration)                                                    | pédogéochimique en ETR, Nb et<br>Ba.                                                                |
|-----------|----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 2011      | Propectair pour le compte de<br>Ressources Géoméga<br>GM 66602 | Levé magnétique et<br>spectrométrique héliporté<br>794km                  | Anomalie à fort contraste<br>magnétique circulaire dans le<br>secteur nord.                         |
| 2011-2012 | Ressources Géoméga                                             | 52 forages de définition<br>supplémentaires (23 607<br>mètres de forages) | Définition des zones<br>minéralisées. Travaux inclus<br>dans le présent rapport.                    |
| 2012      | Ressources Géoméga<br>GM 66740                                 | Campagne de forage<br>exploratoire de 4 forages pour<br>717 mètres        | Mise à jour d'une nouvelle<br>intrusion de carbonatite de 2<br>km² situé au nord de la<br>propriété |
| 2013      | Ressources Géoméga                                             | 7 forages pour 2061mètres                                                 | Définition d'une zone à terres<br>rares lourdes. Travaux inclus<br>dans le présent rapport.         |

#### 6. Contexte géologique

#### 6.1 Contexte géologique régionale

Goutier (2006) décrit très bien le contexte régional dans son document : *Géologie de la région du lac au Goéland* (RG 2005-05). Les roches de la région sont situées dans la portion orientale de la Province géologique du Supérieur. Cette province comprend des roches datées entre 3.8 et 2.6 Ga, qui ont été déformés durant l'orogénèse kénoréenne entre 2720 et 2660 Ma.

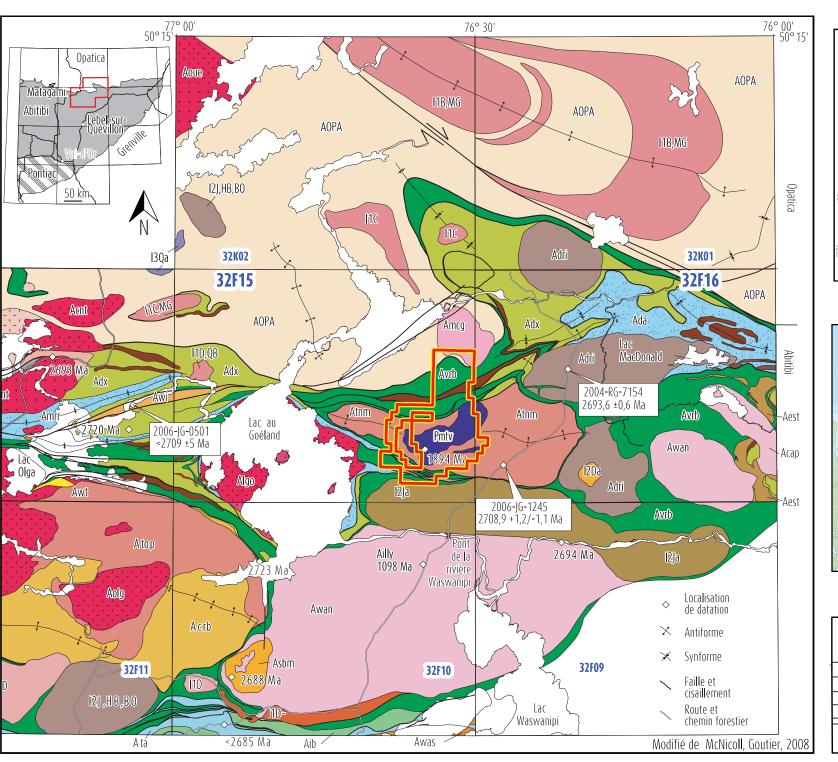
La sous-province d'Opatica, qui couvre le secteur nord de la propriété, est un ensemble de roche plutonique et volcanique. Cette sous-province est dominée par des intrusions tonalitiques anciennes (2829-2820 Ma), des tonalites foliées et des gneiss gris (2807-2702 Ma), dont certains ont atteint le faciès supérieur des amphibolites, et des granitoïdes plus jeunes (2696-2676 Ma).

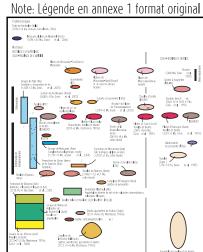
La sous-province de l'Abitibi, qui couvre la majeur partie de la propriété, est un ensemble volcanique, sédimentaire et plutonique. Les plutons synvolcaniques et les volcanites, principalement sous-marines, ont été daté de 2791 à 2696 Ma. Les turbidites, qui forme de longues bandes E-W entre les volcanites, sont plus jeunes et se sont déposés entre 2703 et 2683 Ma. Le dernier événement volcano-sédimentaire (2700-2673 Ma) est représenté par des conglomérats polygéniques et des volcanites alcalines déposés dans un environnement continental. Les plutons syn à tarditectoniques, de compositions variées, se sont mis en place entre 2700 et 2639 Ma. Ces roches ont été déformées lors de l'orogénèse kénoréenne. Elles suivent des séries d'antiformes orientées E-W aux cœurs plutoniques et de synclinaux de volcanites ou de roches sédimentaires. Les plis sont séparés par de longues zones de cisaillement orientées E-W, WNW et plus rarement NE. Le degré de métamorphisme de ces roches varie du faciès inférieur des schistes verts à celui des amphibolites.

La zone de contact entre les sous-provinces d'Opatica et de l'Abitibi est interprétée comme une zone de collision entre un bassin océanique et un craton. Celle-ci comprend des zones de cisaillement inclinées vers le sud, ou l'Abitibi



chevauche vers le nord l'Opatica et un décollement majeur incliné vers le nord, ou l'Abitibi glisse sous l'Opatica (subduction).


Le substratum rocheux de la propriété Montviel appartient à la sous-province de l'Abitibi, et est adjacent à la limite avec la sous-province de l'Opatica. Le projet Montviel est localisé dans la partie centrale de la ceinture volcanique abitibienne. Cette dernière consiste en une épaisse séquence de roche volcanique et sédimentaire qui a été plissée isoclinalement à travers de vaste anticlinorium et synclinorium, métamorphisée et recoupée par des batholites granitiques. Plus spécifiquement, les roches de la région consistent en majeure partie des laves basaltiques avec de nombreux filons couches de gabbro comagmatique et différentié. Cette bande volcanique est surmontée de faibles séquences sédimentaires (silstone, grauwacke, formation de fer). La séquence a été ultimement recoupée par l'intrusion des plutons de Waswanipi et de Capisisit. Les unités lithologiques sont d'âge archéen et appartiennent à la ceinture volcanique de Chibougamau-Matagami, à l'exception des essaims de dykes diabasiques qui sont d'ère protérozoïque. Les roches archéennes ont été plissées et métamorphosées au faciès des amphibolites, localement au faciès des cornéennes à hornblende au contact des intrusifs.


Les intrusions alcalines et particulièrement les carbonatites sont interprétées comme étant issue d'un contexte d'extension tectonique intracontinental. Certains auteurs suggèrent que la carbonatite de Montviel est localisée au cœur du rift avorté du Saguenay. Moorhead et al. (1999) situe la carbonatite de Montviel à l'ouest de l'intersection des corridors Nottaway et Waswanipi – Saguenay et légèrement au nord du corridor Waswanipi-Saguenay. Les complexes alcalins Crevier (957.5 ± 2.5 Ma à 1700 Ma)<sup>1</sup>, St-Honoré (650 Ma)<sup>2</sup> et Montviel (1894 ± 4 Ma)<sup>3</sup> sont toutes localisées sur ce linéament crustal, associé au graben du Saguenay.

- 1 : Groulier et al., 2012
- 2 : Grenier et Tremblay, 2012 , Rapport technique NI 43101.
- 3 : David *et al.*, 2006




## FIGURE 3: MONTVIEL - GÉOLOGIE RÉGIONALE







#### Projection NAD83 (LAT/LONG)



#### 6.2 Géologie locale

L'intrusion alcaline de Montviel est contenue dans la tonalite de Nomans (daté à 2708.9 Ma). La tonalite est très déformée et représente une fenêtre exposée au centre d'une structure en dôme.

L'intrusion alcaline de Monviel (daté à 1894±4 Ma par David et al., 2006) est significativement plus jeune que la roche encaissante, elle est très faiblement métamorphisée avec très peu de déformation. L'intrusion est orientée ENE avec une superficie de 32 km², soit approximativement 10km x 3km. Selon Goutier (2006), elle plongerait de façon assez abrupte vers le NNW. L'intrusion alcaline de Montviel est composée de six unités lithologies principales (Pmvt1 à Pmtv6). Les lithologies décrites ici sont résumées à partir du document de Goutier (2006) et d'observation faite en forage.

L'unité *Pmtv1* est composée de pyroxénite et de péridotite à biotite, c'est l'unité qui possède la plus forte susceptibilité magnétique. Elle forme quatre zones dont une seule affleure, mais elle a été interceptée dans quelques forages d'exploration. Goutier associe la susceptibilité magnétique à la présence probable de magnétite. En forage, la susceptibilité magnétique est associée à la présence de titanomagnétite intergranulaire aux grains d'olivine et de pyroxène (Tremblay 2014, rapport interne). La susceptibilité magnétique varie selon le degré d'altération métasomatique (fénétisation, altération à carbonate et amphibole sodique).

L'unité *Pmtv2* est composée de syénite, de mélanosyénite et de pyroxène à biotite. Le magnétisme régional qui y est associé est plus faible. Cette unité possède une affinité géochimique miaskitique (Na + K)/Al < 1). Elle est généralement très altérée en carbonate et amphibole sodique, localement on observe une altération potassique. Elle couvre une superficie relativement faible au NE de la propriété. La mélanosyénite en alternance avec une pyroxénite a été observée en tranchée sur la propriété Montviel.

L'unité *Pmtv3* est l'unité la plus présente de l'intrusion. Elle comprend une ijolite, une urtite qui sont recoupées par différentes syénites et par des ultramafiques (principalement une pyroxénite avec une quantité relativement importante en biotite). Ces lithologies ont une affinité agpaitique (Na + K)/ Al > 1). La datation du système a 1894 ± 4 Ma a été effectué sur un affleurement d'ijolite. Elle a été intersectée entre autres par le forage MVL-13-76.

L'unité *Pmtv4* est localisée dans la partie centre sud de l'intrusion et est composé d'un granite parfois pegmatitique recoupé localement par des dykes de silicocarbonatite tardive (variété 4 et 5 selon Goutier, 2006). Elle correspond aux zones moins magnétiques adjacentes et est contenue dans l'unité Pmtv3.

L'unité *Pmtv5* comprend les carbonatites et silicocarbonatites de Montviel. Elle est composée de deux intrusions distinctes. Celle située plus à l'ouest, possédant une superficie de 2.9 km² a été définie à l'origine par Corbeil et Villeneuve (1994). Cette intrusion a depuis fait l'objet de travaux en 2011-2012 par Canada Rare Earths.

La seconde intrusion de carbonatite, qui comprend le gisement de Montviel, est localisée au centre du système alcalin et possède une superficie de 2.76 km². Elle n'affleure pas, bien que des dykes décimétriques à métrique aient été observés en tranchée. Cette intrusion a été assez bien définie avec plus de 90 forages effectués par Ressources Géoméga inc. depuis 2010. Elle est composée de plusieurs types de carbonatites soit une ferrocarbonatite, une

calciocarbonatite et une silicocarbonatite dont les différents faciès seront décrits dans la section suivante. L'Apatite et les terres rares légères présentent des affinités avec la ferrocarbonatite, alors que les terres rares lourdes semblent



plus associés à la calciocarbonatite et aux brèches hydrothermales tardives. Quant aux minéralisations en pyrochlore (niobium), elles sont présentes dans un faciès de silicocarbonatite. Les faciès associés aux différentes minéralisations seront décrits dans la section gisement et minéralogie.

Une troisième intrusion a été mise à jour par Géoméga en 2012 (Martel et al., 2012) dans les forages d'exploration MVP-12-02B et MVX-12-01. Elle se situe à 7 km au nord du gisement de Montviel. Basée sur la susceptibilité magnétique, cette intrusion aurait une superficie approximative de 2 km² avec une forme ovoïde et orientée ENE, les lithologies et minéralisations sont semblables à celle observée sur le gisement principal.

L'unité *Pmtv6* est une brèche polygénique à matrice de carbonate et amphibole, elle affleure au nord de la rivière Nomans. Elle a aussi été observée dans plusieurs tranchées et elle est décrite régulièrement en forage. La brèche est généralement massive et peut être de puissance métrique à décamétrique. Les fragments sont d'isolée à jointifs, arrondis a anguleux, de quelques millimétriques à décimétrique, rarement plurimétrique. Plus au NW, la brèche se distingue par des fragments plus anguleux et variés et par une matrice moins abondante composée de carbonate-amphibole sodique. Elle contient des fragments d'unité ultramafique (des unités Pmtv1 et Pmtv2). Certains fragments présentent des lithologies qui n'ont pas été observées en surface (ultramafique rubané, tonalite folié, une syénite à cristaux centimétrique, et des fragments de fluorite).



#### FIGURE 4: MONTVIEL - GÉOLOGIE LOCALE 380000 385000 SOUS-PROVINCE ABITIBI Carbonatite, Ferrocarbonatite, Ferrocarbonatite à apatite, silicocarbonatites et calciocarbonatites a pyrrhotite Granite à riebeckite et arfvedsonite Ijolite, urtite, syénites et intrusions ultramafiques Syénite, mélanosyénite et pyroxénite à biotite Diorite métamorphisée Amphibolite dérivée d'un gabbro Pyroxénite à biotite et péridotite à biotite Tonalite à hornblende et biotite Alternance de wacke et de mudrocks turbiditiques Tonalite foliée Amphibolite dérivée d'une andésite Volcanite felsique métamorphisée Basalte métamorphisé et amphibolite de basalte SOUS-PROVINCE OPATICA Monzonite, monzonite quartzifère, granite, syénite Diorite, diorite quartzifère, tonalite Route gravelée • Limites de propriété 5520000 Projection UTM Nad83 Zone 18 GéoMégA Ingénierie innovante et durable 5515000 Propriété Montviel 28 Août 2014 1: 50 000 Thomas Barucchi, M.Sc SNRC 32F15 - 32F16 Alain Cayer, Geo, M.Sc REVU PAR: Modifié de Goutier, 2006 Km 385000

#### 6.3 Géologie de la Carbonatite

La carbonatite de Montviel se distingue des autres carbonatites par l'abondance de la ferrocarbonatite et la présence de calciocarbonatite à pyrrhotine. Les carbonatites sont généralement dominés par la calciocarbonatite et magnésiocarbonatite, elles sont aussi généralement pauvres en magnétite et en sulfure (Wolley et Kampe, 1989). La carbonatite (pmtv5) est dominée par un faciès riche en fer (ferrocarbonatite), cette lithologie occupe la partie centrale de l'intrusion et elle contient la plupart de la minéralisation en terres rares. Elle est interprétée comme étant une injection tardive dans la silicocarbonatite encaissante bien que certains forages d'exploration récents suggèrent qu'une bonne partie de la silicocarbonatite serait en fait une unité ultramafique très altérée en carbonate, amphibole sodique, chlorite et biotite (auréole de fénétisation). Des travaux de caractérisation sont en cours afin de vérifier cette hypothèse.

La ferrocarbonatite peut être divisée en plusieurs faciès dont certains sont davantage associés à une altération qu'a une subdivision lithologique.

Faciès 1: Le premier et le plus abondant, est celui qui renferme la grande majorité des minéralisations en éléments de terres rares légères. Elle se caractérise par son abondance en sidérite, ankérite et en dolomite ferrière et présente une concentration variable en calcite. Le plus souvent elle a une granulométrie moyenne (mm-cm) avec une texture marbrée, souvent hétérogranulaire. Les minéraux accessoires sont withérite, la strontianite, la baritocalcite, la pyrite, la magnétite, la sphalérite, la galène, l'hématite, la biotite, la chlorite, le pyrochlore, des pyroxènes et amphiboles. Les phyllosilicates (biotite, chlorite associé avec une certaine concentration en talc et serpentine) sont généralement présents en concentration variable.

Faciès 2: L'augmentation des concentrations en phyllosilicates, surtout biotite et chlorite, lui donne une apparence de rubannement voir de brèche. C'est dans cette unité que les meilleures intersections en niobium sont observées. Le pyrochlore est présent sous forme d'inclusion à l'intérieur de la biotite et referme la minéralisation en Niobium. Localement on observe la magnétite et ce faciès est également associé à une nette augmentation en sulfure (pyrite, pyrrhotite, et traces de galène, sphalérite, chalcopyrite et d'ilménite). Bien que Goutier classe ce faciès dans les silicocarbonatite, les journaux de forages font référence à une ferrocarbonatite foliée, puisque les contacts sont graduels et que ce faciès renferme une minéralisation importante en éléments de terres rares et en niobium.

Faciès 3: La ferrocarbonatite à baryum a été identifiée sur la seule base des analyses chimiques (haute concentration en baryum). La provenance du baryum est due en toute probabilité à de fortes concentrations en barytocalcite et trace de barytine. Elle s'apparent macroscopiquement à la ferrocarbonatite du faciès 1 mais avec une faible concentration en phyllosilicate, une granulométrie plus homogène et généralement peu de minéralisation. Ce faciès est plus présent dans le secteur Est de la ferrocarbonatite et a été intersecté par les forages de la phase 1 (MVL-10-01 à MVL-11-20).

Faciès 4: La ferrocarbonatite à apatite se présente comme relativement homogène très apparentée au faciès 1, mais avec peu de phyllosilicate. L'apatite se présente sous forme d'altération en apparence pervasive, avec des textures de remplacement. La couleur rosée caractéristique est due à la présence d'inclusion d'oxyde de fer. La monazite est présente en trace et sous forme d'inclusion en liséré des plages d'apatite. Cette altération en apatite se superpose à la minéralisation fluorocarbonates de terres rares, aucun phénomène d'enrichissement en OTRT n'est associé à l'apatite.



# FIGURE 5: GÉOLOGIE DE LA CARBONATITE MONTVIEL mm Faille ---- Grille de forage 5521000 Lithologies Brèche polygénique Dyke Mafique Mix FeC et CaC Ferro-Carbonatite - Apatite Ferro-Carbonatite - Baryte Ferro-Carbonatite Calcio-Carbonatite Silico-Carbonatite Tiré de Goutier, 2006 ] Ijolite, urtite, syénites et intrusion ultra Péridotite et Pyroxénite Tonalite foliée Montviel Modifié de Gouțier, 2006 Projection UTM Nad83 Zone 18 GéoMégA Propriété Montviel 8 septembre 2014 DATE 1: 5 000 Thomas Barucchi, M.Sc DÉSSINÉ PAR: Alain Cayer, Geo, M.Sc REVU PAR: 100 200 300 Mètres 390000 389000

Deux types de calciocarbonatites sont présents dans le système. La première se présente en section métrique à décamétrique massive aux contacts francs que l'on retrouve en périphérie de la ferrocarbonatite ou dans la silicocarbonatite. Elle est composée de calcite rose avec une quantité importante en pyrrhotite et plus accessoirement en pyrite, chlorite et biotite. La pyrrhotine est grossière, interstitielle aux grains de calcite ou en gerbe. La calcite est hypidiomorphe à xénomorphe avec des grains grossiers à moyen. Cette phase est considérée comme précoce puisque localement on observe de la sidérite interstitielle aux cristaux de calcite. La minéralisation présente est plus associée à des carbonates de terres rares, considérés comme primaires, avec un ratio de terres rares moyennes et lourdes sur terres rares totales légèrement plus élevé que les minéralisations présentent dans la ferrocarbonatite. Lorsqu'affecté par la mise en place de la ferrocarbonatite ou lorsqu'elles sont associées aux phénomènes bréchiques tardifs, riche en minéraux phosphatés, ou encore à l'altération tardive en calcite, décrite ci-bas, ces unités peuvent présenter des intersections significatives en terres rares lourdes.

La deuxième unité de calciocarbonatite est interprétée comme une phase d'altération plus tardive ou l'on observe le remplacement de la sidérite par de la calcite rose. On retrouve cette altération calcitique à l'intérieur ou en périphérie de la ferrocarbonatite. Elle se présente sous forme de niveaux métriques à décamétriques aux contacts diffus et à granulométrie fine. La minéralisation présente est très similaire à celle retrouvée dans la ferrocarbonatite de faciès 1. Elle est interstitielle aux minéraux de gangue, mais aussi en très fine inclusion dans les minéraux de calcite néoformée. Plusieurs intersections minéralisées de cette unité ont titré des teneurs supérieures à 2% OTRT, ce qui suggère que l'altération tardive en calcite est accompagnée d'un enrichissement des phases minéralisées en terres rares. Ces unités, peuvent être accompagnées d'une portion plus ou moins riche en phyllosilicate et lorsque les proportions phyllosilicate/carbonate de fer/calcite sont à peu près équivalentes on fait référence à une carbonatite mixte.

La silicocarbonatite est aussi subdivisée en plusieurs faciès. Le premier mentionné précédemment est une variété qui s'apparente à une ferrocarbonatite, mais avec une quantité plus importante de phyllosilicate et l'enrichissement présente généralement des contacts graduels dans la ferrocarbonatite. Elle est d'ailleurs classée comme une ferocarbonatite foliée dans les registres et les journaux de forages de Ressources Géoméga (ferrocarbonatite faciès 2).

La silicocarbonatite encaissant la ferrocarbonatite est une roche verte, très homogène à grains moyens à fin avec une plus grande proportion en minéraux mafiques (pyroxène, olivine, amphibole) le plus souvent très altérés en chlorite et contient une quantité importante de carbonate (plus de 30%). Des travaux de caractérisation sont en cours afin de déterminer si la silicocarbonatite encaissante serait, du moins en partie, une unité ultramafique avec une altération intense en carbonate (une auréole de fénétisation).

Des dykes ultramafiques alcalins, dont quelques-uns seraient possiblement de nature kimberlitique ou lamprophyrique, ont été décrits en affleurement et en forage. Ils recoupent tous les faciès de carbonatites précédents. Goutier (2006) subdivise ces dykes tardifs en deux catégories de silicocarbonatites, soit une première variété à grain fin de gris-brun à vert foncé et équigranulaire. Elle est composée de phénocristaux automorphes de biotite et d'amas de minéraux opaques dans une matrice de carbonate et de biotite-chlorite. Ces dykes sont communément observés en forages, ils sont le plus souvent de puissance centimétrique à métrique.

Le deuxième faciès de dyke est en toute probabilité de la famille des kimberlites, la matrice est à grain fin, relativement uniforme composé de carbonate, de chlorite et d'olivine automorphe à arrondie le plus souvent totalement altéré en serpentine et en carbonate. On note la présence de spinelle en atoll et de trace de xénolithes de



chromite. D'autres tests sont prévus pour déterminer la nature kimberlitique d'un de ces dykes. Il pourrait y avoir une certaine corrélation à faire avec la kimberlite d'Ailly ( $1098 \pm 24 \text{ Ma}$ , Geospec Consultants, 2004).

On observe plusieurs secteurs bréchiques au cœur et sur les pourtours du gisement. Les brèches observées au cœur du gisement se distinguent de la brèche polygénique décrite précédemment (Pmtv6) par la présence d'une matrice très riche en minéraux phosphatés et/ou de matrice riche en calcite. Les fragments sont majoritairement composés de ferrocarbonatites, de calciocarbonatite et de silicocarbonatite. Les fragments sont anguleux et peuvent être millimétriques à métrique. Certaines de ces brèches contiennent des secteurs riches en éléments de terres rares lourdes.

Les contacts entre les différentes lithologies sont interprétés comme étant subvertical dans la portion sud et pente progressivement vers le NNW jusqu'à atteindre un pendage de 70° à la limite du contact nord. Les contacts entre la ferrocarbonatite et la silicocarbonatite encaissante sont le plus souvent faillés ou délimités par des brèches intrusives tardives. Plusieurs failles affectent l'intrusion, celle qui traverse du NNW vers le SSE a été déterminé sur la base du taux de fracturations, mais aussi des décalages lithologiques et serait pentée légèrement vers le SO. De nombreuses failles cassantes subverticales orientées est-ouest, dont certaines concentriques, affectent la ferrocarbonatite.

#### 6.4 Minéralogie et distribution des ÉTR

Les études pétrographiques qui combinaient les méthodes de microscope optique et de microsonde électronique suggèrent que la phase primaire serait un carbonate de terres rares soit de la burbankite [(Na,Ca)<sub>3</sub>(Sr,Ba,Ce)<sub>3</sub>(CO3)<sub>5</sub>REE] ou de la carbocernaite [(Ca,Na)(Sr,Ce,Ba)(CO3)<sub>2</sub>REE]. En lame mince on peut voir des grains pseudomorphes prismatiques de burbankites/carbocernaite altérés. Macroscopiquement elle se présente sous forme plus grossière et prismatique d'une couleur rose-orangé avec un éclat plus vitreux. On note cependant que la majorité de la minéralisation en ÉTR sur Montviel se présente sous forme de fluorocarbonate de terres rares, d'une couleur rouge brique avec un éclat mat voir terreux (zhonghuacerite [Ba<sub>2</sub>Ce(CO<sub>3</sub>)<sub>3</sub>F-REE]), plus localement la minéralisation est de teinte rose pâle (qaqarssukite [Ba(Ce,REE)(CO3)<sub>2</sub>F-REE] et/ou huanghoite [Ba,Ce(CO<sub>3</sub>)<sub>2</sub>F-REE]). Elle est interstitielle ou en amas entre les grains de carbonate de fer ou finement disséminé dans la carbonatite. Cette minéralisation serait issue du remplacement de la burbankite/carbocernaite par les fluorocarbonates de terres rares, majoritairement de la zhonghuacerite le plus souvent en association avec une quantité moindre de qaqarssukite et accessoirement de la synchysite [Ca,Ce(CO<sub>3</sub>)<sub>2</sub>F-REE]. Une seconde altération plus tardive, possiblement reliée à un épisode d'hydrothermalisme, aurait poussé altération jusqu'à la formation de l'ancylite [Sr, Ce(CO<sub>3</sub>)<sub>2</sub>(OH).(H<sub>2</sub>O)-REE].

On note la présence de minéraux de carbonate de Ba-REE enrichie en Yttrium et terres rares lourdes, possiblement de l'ewaldite  $[(Ba,Sr)(Ca,Na,Y,Ce)_3(CO_3)_2]$  et/ou de la McKelveyite  $[(Ba,Sr)(Nd,Ce,La)(CO_3)_2$  4-10H<sub>2</sub>O]. On note également l'absence de bastnasite  $[Ce_2(CO_3)F]$ .

La monazite [Ce,La,Nd,Th)P04] a surtout été observée dans les zones riches en apatite [Ca<sub>5</sub>(P0<sub>4</sub>)<sub>3</sub>(F,Cl,OH)]. Elle est présente en inclusion dans l'apatite et elle compte rarement pour plus de 2% de la roche. Il s'agit donc d'une phase relativement mineure de la minéralisation. La minéralisation en niobium est contrôlée par la présence de pyrochlore, qui est en relation étroite avec la quantité de phyllosilicate présente à l'intérieur de la ferrocarbonatite.



#### 7. Type de gisement

Les carbonatites sont définis comme étant une roche ignée intrusive ou extrusive avec une proportion en volume de carbonate supérieur à 50%. Elles sont typiquement jumelées à d'autres roches sous-saturées (syénite à néphéline, ijolite, urtite). Elles peuvent se présenter sous forme d'intrusion, de dyke, et de sill (Wolley et Kempe, 1989). Les dépôts reliés aux carbonatites sont classifiés comme des gîtes magmatique ou métasomatique (Richardson et Birkett, 1996; Jébrak et Marcoux 2008) et leur équivalent supergène (Jébrak et Marcoux 2008).

Les minéralisations associées aux carbonatites sont classifiées dans deux grandes classes. La première est associée à des complexes métasomatiques, il s'agit du résultat d'une réaction entre les fluides hydrothermaux libérés durant la cristallisation et les carbonates de la roche encaissante. Le second type de minéralisation est primaire et magmatique, elle résulte d'une cristallisation fractionnée où les éléments incompatibles s'accumulent et deviennent de plus en plus concentrés dans le magma résiduel. C'est cette concentration anormalement élevée qui est à l'origine de la présence de minéraux peu communs.

Certains complexes montrent ces deux caractéristiques, c'est le cas de la carbonatite de Saint-Honoré (Niobec) ou la minéralisation en niobium (Garnier et Tremblay, 2012) est primaire (magmatique) et la minéralisation en éléments de terres rares est associée à des phases métasomatiques.

Il semble que la carbonatite de Montviel montre une certaine ressemblance à celle de Saint-Honoré puisque l'on peut définir une minéralisation primaire suivie de plusieurs épisodes d'enrichissement/altération subséquente. Les lithologies sont aussi d'excellent guide pour définir les zones minéralisées.



#### 8. Campagne de Forages

La première campagne de 20 forages ("Phase 1") a mis à jour la ferrocarbonatite minéralisée en terres rares et défini la zone minéralisée avec une maille de 100m. Une première estimation des ressources a été réalisée à la suite de ces 20 forages et a démontré l'excellent potentiel du gisement (Desharnais, 2011). La campagne de forage "Phase 2" a débuté en septembre 2011 et s'est terminé en mars 2012. La Phase 2 avait pour objectif de mieux définir la ferrocarbonatite c'est-à-dire de passé d'une maille de 100 mètres (défini durant la Phase 1) à une maille de 45 ou 50 mètres dans les secteurs plus minéralisés. Les secteurs non investigués en Phase 1, ont été forés en respectant une maille de 100m dans la ferrocarbonatite. Des 56 forages de la Phase 2, 52 (22 387 m) ont permis d'améliorer la caractérisation de la ferrocarbonatite et de la minéralisation, 4 forages (1 937 m) ont investigué sa périphérie.

Ces nouveaux forages ont permis de mettre à jour la zone "Noyau" qui est une zone enrichie en terres rares dans le secteur Ouest de la ferrocarbonatite. En janvier 2013, une très courte campagne de 4 forages pour 717 mètres s'ajoute à la Phase 2. Elle a permis d'améliorer la compréhension géologique du gisement et d'investigué une cible d'exploration.

Une troisième phase de forages ("Phase 3") fut réalisée de novembre à décembre 2013. Cette campagne a investigué une zone enrichie en terres rares lourdes qui fut mise à jour par cinq (5) forages de la Phase 2. Des sept (7) forages planifiés en Phase 3, cinq (5) ont intersecté la zone "HREE-S" et deux (2) ont délimité ses extrémités est et ouest. Le tableau 5 résume les principales caractéristiques des campagnes Phase 1, Phase 2 et Phase 3 réalisées sur la propriété Montviel.

Tableau 5 : Données techniques des campagnes de forages de la propriété Montviel.

| Campagne de forages | Début                    | Début Fin  |    | Mètres | Fait saillant                                                                                      |
|---------------------|--------------------------|------------|----|--------|----------------------------------------------------------------------------------------------------|
| Phase 1             | Décembre 2010            | Avril 2011 | 20 | 10 065 | Découverte de la ferrocarbonatite<br>minéralisée en terres rares; 1re Estimation<br>des ressources |
| Phase 2             | Septembre 2011           | Mars 2012  | 52 | 23 607 | Définition de la zone ''Noyau''                                                                    |
| riidse Z            | Janvier 2013             |            | 4  | 717    | Exploration, Caractérisations géologiques                                                          |
| Phase 3             | se 3 Novembre 2013 Décer |            | 7  | 2061   | Définition de la zone à terres rares lourdes<br>''HREE-S''                                         |
|                     | Total                    |            | 83 | 36 450 |                                                                                                    |

Au cours des campagnes Phase 2 et 3, 14 680 échantillons (pour 22 185 mètres) ont été analysés pour



les éléments des terres rares. Les échantillons étaient généralement échantillonnés par intervalles de 1,5 mètre, mais pouvaient être ajustés en fonction de la géologie, des minéralisations ou des altérations. De plus, 1021 échantillons en blancs, standards et duplicatas ont été insérés dans les envois au laboratoire afin d'assurer le contrôle de qualité. Un rapport complet de ce dernier sera inclut dans le rapport du prochain estimé de ressources, prévues dans les prochains mois. Le résumé des caractéristiques techniques des forages de la Phase 2 et 3 est présenté au tableau 6 et leurs positions et traces sont illustrées à la figure 6.

Lors des campagnes Phase 2 et Phase3, 16 forages (pour 1005 mètres), ont été annulés ou abandonnés suite à des problèmes techniques, perte du tubage ou du train de tige, ou dû à de trop grandes variations lors des tests d'orientation. De ces trous annulés et/ou abandonnés, 302 échantillons (pour 475,1 mètres) ont été analysés pour les éléments de terres rares. De plus, 13 échantillons en blancs, standards et duplicatas ont été insérés dans les envois au laboratoire afin d'assurer le contrôle de qualité. Un résumé des caractéristiques techniques de ces forages est présenté au tableau 7.

L'orientation de chaque forage était mesurée à l'aide d'un appareil REFLEX. Une mesure était prise 9 mètres après la fin de chaque tubage et par la suite à tous 60 mètres jusqu'à 210 mètres et par la suite au 120 mètres jusqu'à la fin du forage. En cas de grandes variations entre la mesure réelle et l'orientation théorique, une nouvelle mesure était prise 21 mètres plus loin, le forage était avorté dans le cas d'une trop forte déviation. Si un forage était abandonné, les carottes de forage prélevées étaient tout de même décrites et échantillonnées. Une fois un forage complété, l'instrument de mesure d'orientation, REFLEX, était placé 6 mètres à la fin du train de tiges afin de réaliser un levé en lectures multiples à tous les 3 mètres. Forage Orbit/Garant de Val-d'Or ont été mandaté pour réaliser les 2 campagnes de forages. Tous les forages de la Phase 2 ont été arpentés.



# FIGURE 6: LOCALISATION DES FORAGES DES PHASES 1, 2 ET 3 389000 mm Faille Trace de forage de la phase 1 Continue of the state of the st ---- Grille de forage Lithologies Trace de forage de la phase 2 Brèche polygénique Trace de forage de la phase 3 Dike Mafique Mix FeC et CaC Forage phase 1 Ferro-Carbonatite - Apatite Ferro-Carbonatite - Baryte Forage phase 2 Ferro-Carbonatite Forage phase 3 Calcio-Carbonatite Silico-Carbonatite Modifié de Goutier (RG-2006) ljolite, urtite, syénites et intrusion ultra Péridotite et Pyroxénite Tonalite foliée Montviel Modifié de Gouțier, 2006 Projection UTM Nad83 Zone 18 GéoMégA Propriété Montviel 28 Août 2014 1: 5 000 DÉSSINÉ PAR: Thomas Barucchi, M.Sc Alain Cayer, Geo, M.Sc 300 100 200 Mètres 389000 390000 26

Tableau 6 : Données techniques des forages des campagnes de forage Phase 2 et 3.

| No de                  | UTM Na           | ad83 Z18           | Élévation      | Azimut/                | Longueur   | Échantillons             | Duplicates | Standards | 7000                  | No de              | Costica        |
|------------------------|------------------|--------------------|----------------|------------------------|------------|--------------------------|------------|-----------|-----------------------|--------------------|----------------|
| forage                 | Est              | Nord               | (m)            | Plongée                | (m)        | (m total)                | Duplicatas | et Blancs | Zone                  | CDC                | Section        |
| MVL-11-21              | 389773           | 5520054            | 284,7          | 240 / -55              | 434,4      | 268 (400,9)              | 6          | 11        | Explo-0               | 1011046            | 7+25W          |
| MVL-11-22              | 389709           | 5520158            | 285,2          | 330 / -55              | 336        | 200 (300,8)              | 4          | 8         | Noyau                 | 1011045            | 7+25W          |
| MVL-11-23              | 389817           | 5519965            | 284,0          | 330 / -55              | 450        | 280 (423,2)              | -          | 10        | Noyau                 | 1011046            | 7+25W          |
| MVL-11-24              | 389790           | 5520282            | 284,0          | 330 / -55              | 357        | 205 (318,5)              | -          | 9         | Noyau                 | 1011046            | 5+90W          |
| MVL-11-25              | 389840           | 5520201            | 284,1          | 330 / -55              | 497,5      | 288 (462,7)              | 5          | 12        | Noyau                 | 1011046            | 5+90W          |
| MVL-11-26              | 389895           | 5520103            | 284,0          | 330 / -55              | 642        | 363 (601,7)              | 8          | 15        | Noyau                 | 1011046            | 5+90W          |
| MVL-11-27              | 389948           | 5520007            | 284,1          | 330 / -55              | 744        | 468 (710,3)              | 10         | 20        | Noyau                 | 1011046            | 5+90W          |
| MVL-11-28              | 389896           | 5520472            | 284,7          | 330 / -55              | 518        | 317 (477,5)              | 6          | 13        | <u>Est</u>            | 1011052            | 4+00W          |
| MVL-11-29B             | 389958           | 5520376            | 284,1          | 330 / -55              | 615        | 370 (554,8)              | 8          | 15        | Est                   | 1011052            | 4+00W          |
| MVL-11-30              | 389796           | 5520063            | 284,8          | 180 / -45              | 609        | 383 (572,8)              | 10         | 16        | Explo-S               | 1011046            | 6+80W          |
| MVL-11-31              | 389732           | 5520217            | 285,2          | 330 / -55              | 513        | 310 (477)                | 6          | 13        | Noyau                 | 1011046            | 6+80W          |
| MVL-11-32D             | 389785           | 5520122            | 284,7          | 330 / -55              | 486        | 288 (433,4)              | 6          | 13        | Noyau                 | 1011046            | 6+80W          |
| MVL-11-33B             | 390120           | 5520317            | 283,5          | 150 / -45              | 825        | 517 (782,8)              | 12         | 22        | Explo-S               | 1011052            | 3+00W          |
| MVL-11-34              | 389835           | 5520021            | 284,5          | 330 / -55              | 573        | 359 (540)                | 9          | 15        | <u>Noyau</u>          | 1011046            | 6+80W          |
| MVL-11-35B             | 389993           | 5520515            | 285,3          | 330 / -55              | 438        | 257 (393)                | 6          | 11        | Est                   | 1011052            | 3+00W          |
| MVL-11-36              | 389890           | 5519928            | 284,0          | 330 / -55              | 600        | 376 (564,7)              | 9          | 16        | Noyau                 | 1011046            | 6+80W          |
| MVL-11-37B             | 390163           | 5520225<br>5520303 | 283,3          | 330 / -54              | 921        | 578 (855,1)              | 7          | 24        | <u>Est</u>            | 1011046            | 3+00W          |
| MVL-11-38<br>MVL-11-39 | 389731<br>389755 | 5520303            | 284,2<br>284,5 | 330 / -55<br>330 / -55 | 249<br>342 | 139 (209)<br>200 (304,3) | 3          | 6<br>12   | Noyau                 | 1011052<br>1011052 | 6+35W<br>6+35W |
| MVL-11-39<br>MVL-11-40 | 389755           | 5520259            | 284,8          | 330 / -55              | 303        | 172 (258,3)              | 3          | 12        | Noyau<br>Noyau        | 1011052            | 5+00W          |
| MVL-11-40<br>MVL-11-41 | 389782           | 5520210            | 284,6          | 330 / -55              | 384        | 229 (347)                | 5          | 15        | Noyau<br>Noyau        | 1011046            | 6+35W          |
| MVL-11-41              | 389730           | 5520384            | 284,8          | 330 / -55              | 543        | 331 (501,3)              | 7          | 21        | <u>Noyau</u><br>Noyau | 1011032            | 5+90W          |
| MVL-11-43              | 389808           | 5520162            | 284,7          | 330 / -55              | 489        | 296 (456,5)              | 7          | 19        | Noyau                 | 1011032            | 6+35W          |
| MVL-12-44B             | 389802           | 5520375            | 284,0          | 330 / -56              | 411        | 242 (365,4)              | 5          | 15        | Noyau                 | 1011040            | 5+45W          |
| MVL-12-45              | 389835           | 5520113            | 284,4          | 330 / -55              | 564        | 350 (524,5)              | 9          | 22        | Noyau                 | 1011032            | 6+35W          |
| MVL-12-46              | 389784           | 5520409            | 284,8          | 330 / -55              | 411        | 248 (372,1)              | 6          | 17        | Noyau                 | 1011052            | 5+45W          |
| MVL-12-47              | 389862           | 5520065            | 284,4          | 330 / -55              | 621        | 391 (586)                | 8          | 26        | Noyau                 | 1011046            | 6+35W          |
| MVL-12-48              | 389823           | 5520342            | 284,0          | 328 / -57              | 378        | 224 (336,4)              | 5          | 15        | Noyau                 | 1011052            | 5+45W          |
| MVL-12-49              | 389759           | 5520169            | 285,0          | 330 / -55              | 357        | 203 (313)                | 4          | 12        | Noyau                 | 1011046            | 6+80W          |
| MVL-12-50              | 389756           | 5520457            | 285,0          | 330 / -55              | 147        | 71 (106)                 | 1          | 3         | Noyau                 | 1011052            | 5+45W          |
| MVL-12-51              | 389809           | 5520074            | 284,5          | 330 / -55              | 381        | 233 (350,4)              | 5          | 10        | Noyau                 | 1011046            | 6+80W          |
| MVL-12-52C             | 389847           | 5520289            | 284,0          | 330 / -55              | 354        | 213 (321,1)              | 5          | 10        | Noyau                 | 1011046            | 5+45W          |
| MVL-12-53              | 389814           | 5520242            | 284,3          | 330 / -55              | 414        | 250 (377,2)              | 8          | 16        | Noyau                 | 1011046            | 5+90W          |
| MVL-12-54              | 389802           | 5520477            | 285,1          | 330 / -55              | 219        | 119 (175,5)              | 3          | 8         | Noyau                 | 1011052            | 5+00W          |
| MVL-12-55              | 389867           | 5520153            | 284,2          | 330 / -55              | 408        | 250 (375,1)              | 6          | 11        | Noyau                 | 1011046            | 5+90W          |
| MVL-12-56B             | 389842           | 5520485            | 285,0          | 330 / -55              | 227        | 111 (165,2)              | 2          | 5         | Est                   | 1011052            | 4+50W          |
| MVL-12-57              | 389921           | 5520055            | 284,1          | 330 / -55              | 561        | 348 (525,1)              | 7          | 15        | Noyau                 | 1011046            | 5+90W          |
| MVL-12-58B             | 389873           | 5520242            | 284,1          | 330 / -54              | 414        | 254 (380,6)              | 5          | 14        | Noyau                 | 1011046            | 5+45W          |
| MVL-12-59B             | 389861           | 5519973            | 284,0          | 330 / -54              | 501        | 307 (466,6)              | 12         | 17        | Noyau                 | 1011046            | 6+80W          |
| MVL-12-60B             | 389900           | 5520196            | 284,3          | 330 / -55              | 486        | 302 (457,9)              | 8          | 16        | Noyau                 | 1011046            | 5+45W          |
| MVL-12-61              | 389927           | 5520151            | 284,1          | 330 / -55              | 606        | 381 (572)                | 8          | 16        | Noyau                 | 1011046            | 5+45W          |
| MVL-12-62              | 389887           | 5520018            | 284,2          | 330 / -55              | 501        | 312 (462)                | 7          | 13        | Noyau                 | 1011046            | 6+35W          |
| MVL-12-63              | 389952           | 5520105            | 284,0          | 330 / -55              | 501        | 309 (461)                | 7          | 13        | Noyau                 | 1011046            | 5+45W          |
| MVL-12-64              | 389869           | 5520437            | 284,8          | 330 / -55              | 354        | 204 (302,8)              | 4          | 9         | Est                   | 1011052            | 4+50W          |
| MVL-12-65              | 389978           | 5520060            | 284,1          | 330 / -55              | 471        | 292 (437,8)              | 6          | 12        | Noyau                 | 1011046            | 5+45W          |
| MVL-12-66              | 389852           | 5520385            | 284,2          | 330 / -55              | 378        | 222 (331,5)              | 5          | 10        | Noyau                 | 1011052            | 5+00W          |
| MVL-12-67              | 389752           | 5520359            | 284,4          | 328 / -59              | 309        | 179 (268,3)              | 4          | 8         | Noyau                 | 1011052            | 5+90W          |
| MVL-12-68              | 389899           | 5520298            | 283,8          | 329 / -55              | 375        | 221 (331,4)              | 4          | 9         | Noyau                 | 1011052            | 5+00W          |
| MVL-12-69              | 389918           | 5520264            | 283,5          | 328 / -55              | 375        | 231 (344,8)              | 7          | 10        | Noyau                 | 1011046            | 5+00W          |
| MVL-12-70              | 389967           | 5520159            | 283,5          | 330 / -55              | 465        | 289 (432,5)              | 6          | 12        | <u>Noyau</u>          | 1011046            | 5+00W          |
| MVL-12-71              | 389786           | 5520523            | 285,4          | 330 / -70              | 249        | -                        | -          | -         | Noyau                 | 1011052            | 5+00W          |
| MVL-12-72              | 389958           | 5520181            | 283,6          | 151 / -68              | 300        | -                        | -          | -         | Noyau                 | 1011046            | 5+00W          |



| No de forage | UTM Na<br>Est | ad83 Z18<br>Nord | Élévation<br>(m) | Azimut/<br>Plongée | Longueur<br>(m) | Échantillons (m<br>total) | Duplicatas | Standards<br>et Blancs | Zone    | No de CDC | Section |
|--------------|---------------|------------------|------------------|--------------------|-----------------|---------------------------|------------|------------------------|---------|-----------|---------|
| MVL-13-73    | 389836        | 5520206          | 284,0            | 244 / -67          | 252             | -                         | -          | -                      | Noyau   | 1011046   | 5+90W   |
| MVL-13-74    | 389888        | 5520295          | 283,3            | 250 / -66          | 252             | -                         | -          | -                      | Noyau   | 1011046   | 5+00W   |
| MVL-13-75    | 389837        | 5520497          | 286,0            | 294 / -45          | 144             | -                         | -          | 1                      | Noyau   | 1011052   | 4+50W   |
| MVL-13-76    | 388938        | 5520124          | 285,0            | 270 / -77          | 69              | 23 (33,9)                 | -          | 2                      | Explo-0 | 1011044   | -       |
| MVL-13-77    | 389745        | 5520104          | 285,0            | 150 / -45          | 294             | 100 (154)                 | 2          | 6                      | HREE    | 1011046   | 7+25W   |
| MVL-13-78    | 389831        | 5520118          | 284,5            | 150 / -45          | 273             | 96 (144)                  | 2          | 4                      | HREE    | 1011046   | 6+35W   |
| MVL-13-79    | 389921        | 5520154          | 284,0            | 150 / -45          | 297             | 122 (183)                 | 2          | 6                      | HREE    | 1011046   | 5+45W   |
| MVL-13-80    | 390020        | 5520176          | 283,5            | 150 / -45          | 261             | 67 (99,7)                 | 2          | 2                      | HREE    | 1011046   | 4+50W   |
| MVL-13-81    | 389663        | 5520081          | 285,0            | 150 / -45          | 261             | 98 (147)                  | 1          | 8                      | HREE    | 1011045   | 8+15W   |
| MVL-13-82    | 389663        | 5520083          | 285,0            | 195 / -45          | 225             | -                         | -          | -                      | HREE    | 1011045   | 8+75W   |
| MVL-13-83    | 389673        | 5520138          | 285,0            | 150 / -49          | 450             | 224 (336)                 | 2          | 12                     | HREE    | 1011045   | 8+00W   |
| 63 forages   |               |                  |                  |                    | 26384,9         | 14680<br>(22185,4 m)      | 309        | 712                    |         |           |         |

Tableau 7 : Données techniques des forages annulés ou abandonnés des campagnes Phase 2 et 3.

| No de forage | UTM Na<br>Est | nd83 Z18<br>Nord | Élévation<br>(m) | Azimut/<br>Plongée | Longueur<br>(m) | Échantillons<br>(m total) | Duplicatas | Standards<br>et Blancs | Zone   | No de CDC | Section |
|--------------|---------------|------------------|------------------|--------------------|-----------------|---------------------------|------------|------------------------|--------|-----------|---------|
| MVL-11-29    | 389960        | 5520365          | 284,1            | 330 / -55          | 114             | 48 (80,0)                 | -          | 1                      | Est    | 1011052   | 4+00    |
| MVL-11-32    | 389781        | 5520120          | 284              | 330 / -55          | 66              | 16 (27,0)                 | -          | -                      | Noyau  | 1011046   | 6+80    |
| MVL-11-32a   | 389782        | 5520121          | 284,7            | 330 / -55          | 0               | -                         | -          | -                      | Noyau  | 1011046   | 6+80    |
| MVL-11-32b   | 389783        | 5520122          | 284,7            | 330 / -55          | 69              | 10 (14,8)                 | -          | -                      | Noyau  | 1011046   | 6+80    |
| MVL-11-32c   | 389784        | 5520123          | 284,7            | 330 / -55          | 63              | 8 (14,5)                  | -          | -                      | Noyau  | 1011046   | 6+80    |
| MVL-11-33    | 390118        | 5520317          | 283,5            | 150 / -45          | 41,6            | 7 (11,9)                  | -          | -                      | Ex-Sud | 1011052   | 3+00    |
| MVL-11-33a   | 390119        | 5520317          | 283,5            | 150 / -45          | 0               | -                         | -          | -                      | Ex-Sud | 1011052   | 3+00    |
| MVL-11-35    | 389992        | 5520515          | 285,3            | 330 / -55          | 102             | 40 (62,1)                 | -          | 2                      | Est    | 1011052   | 3+00    |
| MVL-11-37    | 390163        | 5520221          | 283,3            | 330 / -55          | 87              | 20 (29,1)                 | -          | -                      | Est    | 1011046   | 3+00    |
| MVL-12-44    | 389802        | 5520374          | 284,0            | 330 / -50          | 57              | 9 (13,1)                  | -          | 1                      | Noyau  | 1011052   | 5+45    |
| MVL-12-52    | 389847        | 5520287          | 284,0            | 330 / -55          | 75              | 25 (39,7)                 | 1          | 1                      | Noyau  | 1011046   | 5+45    |
| MVL-12-52b   | 389847        | 5520288          | 284,0            | 330 / -54          | 96              | 39 (60,6)                 | 1          | 2                      | Noyau  | 1011046   | 5+45    |
| MVL-12-56    | 389841        | 5520487          | 285,0            | 330 / -55          | 57              | 7 (11,0)                  | -          | -                      | Est    | 1011052   | 4+50    |
| MVL-12-58    | 389872        | 5520243          | 284,1            | 330 / -54          | 66              | 21 (33,1)                 |            | 1                      | Noyau  | 1011046   | 5+45    |
| MVL-12-59    | 389860        | 5519974          | 284,0            | 330 / -55          | 111             | 52 (78,2)                 | 1          | 2                      | Noyau  | 1011046   | 6+80    |
| MVL-12-60    | 389891        | 5520204          | 284,3            | 330 / -55          | 0               | -                         | -          | -                      | Noyau  | 1011046   | 5+45    |
| 16 forages   |               |                  |                  |                    | 1004,6m         | 302<br>(475,1m)           | 3          | 10                     |        |           |         |

#### 8.1. Ferrocarbonatite

Les forages implantés dans la ferrocarbonatite avaient majoritairement un azimut de 330° Nord et une plongée de 55°. Sauf pour quelques exceptions, les forages se poursuivaient jusqu'à l'intersection d'un minimum de 20 mètres de silicocarbonatite formant l'éponte de la ferrocarbonatite. Sporadiquement quelques forages ont été prolongés afin d'explorer la périphérie du système minéralisé. Les puissances



minéralisées intersectées correspondent entre 55% et 85% des puissances réelles, en fonction de leur position dans la ferrocarbonatite. Les forages les plus à l'ouest ayant un ratio d'intersection plus faible causé par la forme ovoïde de la ferrocarbonatite.

La définition de la ferrocarbonatite au 45 mètres a permis de mettre à jour et de définir une zone enrichie dans le secteur Ouest de la ferrocarbonatite. Cette "Zone Noyau" a été définie sur près de 150 mètres est-ouest, entre les lignes 5+00W et 6+80W et sur plus de 400 mètres nord-sud. En surface, la zone à une forme amiboïde, avec des contacts irréguliers, concordants avec le contact Ouest (6+80W) de la ferrocarbonatite, en profondeur l'enrichissement semble se concentrer au centre du secteur Ouest (5+00W).

Tous les forages réalisés lors de la Phase 2 ont intersecté la ferrocarbonatite minéralisée. La minéralisation en fluorocarbonate se présente sous forme disséminée et/ou en bandes locales plus enrichies, elle est généralement interstitielle aux minéraux de gangues. Dans les secteurs les plus enrichis, comme dans la zone Noyau, une altération en calciocarbonatite est localement observée. Cette altération, tardive, s'observe par la croissance de cristaux de calcite rose au détriment des minéraux de sidérite et d'ankérite. La minéralisation est aussi observée comme étant interstitielle aux minéraux de ganque, mais aussi en très fines inclusions submillimétriques dans les cristaux de calcite. Les échantillons provenant de ces niveaux d'altérations montrent souvent des teneurs supérieures à 2% OTRT et régulièrement des teneurs supérieures à 3% OTRT. Outre ces zones d'altérations, on retrouve aussi dans le secteur Sud de la ferrocarbonatite des niveaux décamétriques d'altération en apatite. Elle ne semble pas affecter les minéralisations en fluorocarbonates si ce n'est que l'on observe une diminution locale des concentrations en fluorocarbonates de terres rares. Tel que décrit précédemment, on observe aussi des dykes de calciocarbonatite plus ou moins minéralisé et les différentes générations de dykes et d'enclaves de silicocarbonatite. Un résumé des intersections minéralisées des forages de la Phase 2 et 3 est présenté au tableau 8. Les sections de forages avec l'interprétation géologique sont disponibles sur le site web de Géoméga (www. ressourcesqeomega.ca). Parmi les meilleures intersections de minéralisation en terres rares, notons les forages MVL-11-26 (7+25W) qui a titré 1,80% OTRT sur 430,70 mètres, le forage MVL-11-32D (6+80W) qui a titré 1,87% OTRT sur 319,40 mètres, le forage MVL-12-55 (5+90W) qui a titré 2,20% OTRT sur 367,50 mètres et le forage MVL-12-61 (5+45W) qui a titré 1,90% OTRT sur 456,00 mètres.

Le forage MVL-11-37b a intersecté la minéralisation sur 780,00 mètres à une teneur de 1,62% OTRT. Le forage a été arrêté à une profondeur de 921,00 mètres (770,00 mètres vertical) dans une ferrocarbonatite toujours minéralisée.

Quelques forages sont aussi notables par leur intersection en niobium. Ces intersections, présent dans la zone Noyau, se caractérisent par un enrichissement en biotite et autres phyllosilicates qui sont associés à la silicocarbonatite (transition ferrocarbonatite facies 2). Le pyrochlore, qui est la phase minérale contenant le niobium, a été observé en inclusion dans la biotite dans plusieurs observations aux microscopes optique et à balayage électronique (Nadeau et Jébrak 2013<sup>1</sup>; Tremblay, 2011; Goutier 2006). Parmi les meilleures intersections notons les forages MVL-12-59b (6+80W) qui a titré 1,38% oxyde de niobium sur 95,50 mètres et le MVL-12-62 (6+35W) qui a titré 0,93% oxyde de niobium sur 21,00 mètres.



Table 8 : Résumé des intersections minéralisées dans la Ferrocarbonatite (zone Noyau et Est) des campagnes Phase 2 et 3.

| No de forage            | Zone   | Section        | De (m)         | À (m)            | Longueur<br>(m)  | OTRT (%)     | Nd203 (%)    | Nb205 (%)    | OTRML /<br>OTRT (%) |
|-------------------------|--------|----------------|----------------|------------------|------------------|--------------|--------------|--------------|---------------------|
| MVL-11-23               | Noyau  | 7+25W          | 186,00         | 276,00           | 90,00            | 1,54         | 0,21         | -            | 3,20                |
| MVL-11-24               | Noyau  | 5+90W          | 38,50          | 342,00           | 303,50           | 1,24         | 0,22         | -            | 4,70                |
| MVL-11-25               | Noyau  | 5+90W          | 80,40          | 407,70           | 327,30           | 1,39         | 0,24         | 0,13         | 3,70                |
| MVL-11-26               | Noyau  | 7+25W          | 40,30          | 471,00           | 430,70           | 1,80         | 0,29         | 0,22         | 4,30                |
| MVL-11-27               | Noyau  | 5+90W          | 72,70          | 152,00           | 79,30            | 1,51         | 0,22         | 0,16         | 3,17                |
| MVL-11-28               | Est    | 4+00W          | 63,00          | 192,00           | 129,00           | 1,49         | 0,22         | 0,10         | 1,94                |
| MVL-11-29B              | Est    | 4+00W          | 60,20          | 491,00           | 430,80           | 1,28         | 0,21         | 0,11         | 3,37                |
| MVL-11-31               | Noyau  | 6+80W          | 35,50          | 171,70           | 136,20           | 1,47         | 0,25         | 0,14         | 3,27                |
| MVL-11-32D              | Noyau  | 6+80W          | 52,60          | 372,00           | 319,40           | 1,87         | 0,29         | 0,21         | 3,24                |
| MVL 11 JZU              | Noyau  | incl.          | 174,00         | 205,50           | 31,50            | 3,28         | 0,49         | 0,25         | 2,97                |
| MVL-11-34               | Noyau  | 6+80W          | 187,50         | 437,25           | 249,75           | 1,84         | 0,28         | 0,30         | 3,19                |
|                         |        | incl.          | 318,00         | 364,50           | 46,50            | 3,09         | 0,41         | 0,60         | 2,41                |
| MVL-11-35B              | Est    | 3+00W          | 206,80         | 364,30           | 157,50           | 1,74         | 0,30         | 0,19         | 2,76                |
| MVL-11-36               | Noyau  | 6+80W          | 193,50         | 550,30           | 356,80           | 1,48         | 0,21         | 0,13         | 3,84                |
| MVL 11 30               | Noyau  | incl.          | 280,90         | 292,50           | 11,60            | 1,96         | 0,27         | 0,61         | 2,71                |
| MVL-11-37B              | Est    | 3+00W          | 141,00         | 921,00           | 780,00           | 1,62         | 0,29         | 0,15         | 3,09                |
|                         |        | incl.          | 616,00         | 707,80           | 91,80            | 2,12         | 0,40         | 0,28         | 2,98                |
| MVL-11-38               | Noyau  | 6+35W          | 54,10          | 129,00           | 74,90            | 1,54         | 0,27         | 0,33         | 4,03                |
| MVL-11-39               | Noyau  | 6+35W          | 49,50          | 157,10           | 107,60           | 1,57         | 0,27         | 0,18         | 2,74                |
| MVL-11-40               | Noyau  | 5+00W          | 44,50          | 258,00           | 213,50           | 1,69         | 0,29         | 0,14         | 2,56                |
| MVL-11-41               | Noyau  | 6+35W          | 37,00          | 258,00           | 221,00           | 1,53         | 0,26         | 0,15         | 3,02                |
| MVL-11-42               | Noyau  | 5+90W          | 41,70          | 105,60           | 63,90            | 2,00         | 0,30         | 0,25         | 3,26                |
| MVL-11-43               | Noyau  | 6+35W          | 31,00          | 330,00           | 299,00           | 1,79         | 0,30         | 0,27         | 3,02                |
|                         |        | incl.          | 117,00         | 169,50           | 52,50            | 2,80         | 0,44         | 0,51         | 2,73                |
| MVL-12-44B              | Noyau  | 5+45W          | 45,60          | 247,20           | 201,60           | 1,44         | 0,25         | 0,11         | 2,76                |
| MVL-12-45               | Noyau  | 6+35W          | 39,50          | 366,00           | 326,50           | 1,80         | 0,28         | 0,16         | 3,16                |
| MVL-12-46               | Noyau  | 5+45W          | 40,50          | 169,50           | 129,00           | 1,61         | 0,27         | 0,15         | 2,82                |
| MVL-12-47               | Noyau  | 6+35W          | 127,50         | 435,00           | 307,50           | 1,81         | 0,28         | 0,22         | 3,76                |
|                         |        | incl.          | 172,50         | 183,00           | 10,50            | 2,96         | 0,49         | 1,49         | 3,65                |
| MVL-12-48               | Noyau  | 5+45W          | 46,50          | 150,00           | 103,50           | 1,59         | 0,25         | 0,12         | 2,23                |
| MVL-12-49               | Noyau  | 6+80W          | 45,00          | 267,00           | 222,00           | 1,95         | 0,31         | 0,25         | 3,09                |
| MVL-12-50               | Noyau  | 5+45W          | 39,30          | 112,50           | 73,20            | 2,57         | 0,40         | 0,33         | 3,10                |
| MVL-12-51               | Noyau  | 6+80W          | 148,50         | 375,00           | 226,50           | 2,16         | 0,32         | 0,20         | 3,19                |
| MVL-12-52C<br>MVL-12-53 | Noyau  | 5+45W<br>5+90W | 32,90<br>36,80 | 222,00<br>195,00 | 189,10<br>158,20 | 1,59<br>1,72 | 0,26<br>0,29 | 0,11<br>0,09 | 3,20<br>2,90        |
| MVL-12-53<br>MVL-12-54  | Noyau  | 5+90W<br>5+00W | 40,00          | 136,50           | 96,50            | 1,72         | 0,29         | 0,09         | 2,90                |
| WVL-12-34               | Noyau  | 5+00W<br>5+90W | 32,90          | 400,50           | 367,50           | 2,20         | 0,27         | 0,16         | 3,00                |
| MVL-12-55               | Noyau  | incl.          | 100,50         | 400,50<br>115,50 | 15,00            | 3,20         | 0,33         | 1,12         | 2,50                |
| INIAL IT-22             | INUYOU | et             | 270,00         | 280,50           | 10,50            | 2,74         | 0,47         | 1,12         | 1,80                |
| MVL-12-56B              | Est    | 4+50W          | 57,10          | 137,00           | 79,90            | 1,64         | 0,38         | 0,12         | 1,70                |
| MVL-12-506<br>MVL-12-57 | Noyau  | 5+90W          | 157,50         | 400,50           | 243,00           | 1,62         | 0,23         | 0,12         | 3,90                |
| MVL-12-58B              | Noyau  | 5+45W          | 72.00          | 235,50           | 163,50           | 1,61         | 0,26         | 0,24         | 2,70                |
|                         |        | 6+80W          | 318,00         | 501,00           | 183,00           | 1,53         | 0,25         | 0,11         | 3,89                |
| MVL-12-59B              | Noyau  | incl.          | 334,50         | 430,00           | 95,50            | 2,06         | 0,23         | 1,38         | 3,26                |
|                         |        | 5+45W          | 28,10          | 387,00           | 358,90           | 1,56         | 0,33         | 0,15         | 3,00                |
| MVL-12-60B              | Noyau  | incl.          | 108,00         | 196,50           | 88,50            | 2,00         | 0,20         | 0,13         | 2,60                |
| MVL-12-61               | Noyau  | 5+45W          | 58,50          | 514,50           | 456,00           | 1,90         | 0,32         | 0,17         | 3,70                |
|                         |        | 6+35W          | 268,50         | 376,50           | 108,00           | 1,72         | 0,29         | 0,29         | 3,50                |
| MVL-12-62               | Noyau  | incl.          | 351,00         | 370,30           | 21,00            | 2,02         | 0,34         | 0,23         | 3,20                |



| No de forage | Zone  | Section | De (m) | À (m)  | Longueur<br>(m) | OTRT (%) | Nd203 (%) | Nb205 (%) | OTRML /<br>OTRT (%) |
|--------------|-------|---------|--------|--------|-----------------|----------|-----------|-----------|---------------------|
| MVL-12-63    | Noyau | 5+45W   | 103,50 | 495,00 | 391,50          | 1,51     | 0,24      | 0,13      | 3,80                |
| MVL-12-64    | Est   | 4+50W   | 66,90  | 312,00 | 245,10          | 1,39     | 0,23      | 0,14      | 4,00                |
| MVL-12-65    | Noyau | 5+45W   | 178,50 | 471,00 | 292,50          | 1,61     | 0,26      | 0,15      | 3,70                |
| MVL-12-66    | Noyau | 5+00W   | 58,50  | 301,50 | 243,00          | 1,46     | 0,25      | 0,12      | 2,80                |
| MVL-12-67    | Noyau | 5+90W   | 40,70  | 133,50 | 92,80           | 1,56     | 0,26      | 0,25      | 3,70                |
| MVL-12-68    | Noyau | 5+00W   | 73,50  | 313,50 | 240,00          | 1,46     | 0,24      | 0,10      | 3,20                |
| MVL-12-69    | Noyau | 5+00W   | 104,00 | 375,00 | 271,00          | 1,38     | 0,16      | 0,12      | 2,40                |
| MVL-12-70    | Noyau | 5+00W   | 32,00  | 465,00 | 433,00          | 1,64     | 0,27      | 0,22      | 3,30                |

#### 8.2 Exploration

Lors de la Phase 2, cinq (5) forages d'exploration ont été réalisés en périphérie de la ferrocarbonatite. Un résumé des intersections minéralisées des forages d'exploration est présenté dans le tableau 9.

Le forage MVL-11-21 a investigué le secteur Ouest de la ferrocarbonatite. Il a intersecté en début de forage la ferrocarbonatite minéralisée sur près de 100 mètres et par la suite, la silicocarbonatite accompagnée de quelques dykes métriques de ferro ou de calciocarbonatite.

Le forage MVL-11-22 a investigué le secteur Nord-Ouest de la ferrocarbonatite, il a intersecté un niveau décamétrique de ferrocarbonatite minéralisé. Le forage a essentiellement intersecté de la silicocarbonatite avec quelques dykes métriques de ferro et calciocarbonatite.

Les forages MVL-11-30 et 33b ont tous deux investigué le secteur Sud de la ferrocarbonatite. Les deux forages distants de près de 400 mètres ont intersecté des séquences similaires de niveaux métriques à décamétriques de ferro et de silicocarbonatite avec quelques dykes de calciocarbonatite. Le forage MVL-11-30 diffère du MVL-11-33b, puisque en début de forages il a intersecté ce qui deviendra la zone HREE-S enrichie en terres rares lourdes. Le forage MVL-11-33b a quant à lui intersecté en fin de forages un niveau de calciocarbonatite pseudobréchique à matrice phosphatée, enrichie en niobium et terres rares lourdes. Ce niveau de quelques mètres se retrouve à près de 500 mètres au sud de la ferrocarbonatite.

Finalement, le forage MVL-13-76 fut réalisé à plus de 800 mètres à l'ouest de la ferrocarbonatite afin de vérifier la puissance des dépôts meubles et la nature des lithologies de ce secteur. Un dyke décamétrique de calciocarbonatite minéralisé en terres rares lourdes a été intersecté en début de forage et une ijolite a suivi jusqu'en fin de forage. Une première caractérisation des minéralisations présentes dans le dyke a établi que les minéralisations en terres rares lourdes étaient associées à des carbonates de terres rares (Nadeau et Jébrak, 2013<sup>2</sup>).



Tableau 9 : Résumé des intersections minéralisées en terres rares dans les cibles d'explorations de la Phase 2.

| No de forage | Zone        | Section | De (m) | À (m)  | Longueur<br>(m) | OTRT (%) | Nd203 (%) | Nb205<br>(%) | OTRML /<br>OTRT |
|--------------|-------------|---------|--------|--------|-----------------|----------|-----------|--------------|-----------------|
| MVL-11-21    | Explo-Ouest | 7+25W   | 37,00  | 131,00 | 94,00           | 0,89     | 0,12      | -            | 6,4%            |
| MVL-11-22    | Explo-NW    | 7+25W   | 183,00 | 230,50 | 47,50           | 1,07     | 0,20      | -            | 9,4%            |
| MVL-11-30    | Explo-Sud   | 6+80W   | 108,00 | 165,50 | 57,50           | 1,00     | 0,19      | -            | 14,3%           |
|              |             | incl.   | 131,90 | 144,20 | 12,30           | 1,42     | 0,27      | -            | 16,8%           |
| MVL-11-33B   | Explo-Sud   | 3+00W   | 312,00 | 336,00 | 24,00           | 2,09     | 0,33      | 0,19         | 5,4%            |
|              |             | incl.   | 798,00 | 804,00 | 6,00            | 1,26     | 0,25      | 1,98         | 20,6%           |
| MVL-13-76    | Explo-Ouest | -       | 35,10  | 54,00  | 18,90           | 0,43     | 0,05      | -            | 22,3%           |

#### 8.3 Terres rares lourdes

La compilation des intersections minéralisées a permis de mettre à jour plusieurs intersections enrichies en terres rares lourdes et plusieurs d'entre elles possèdent des caractéristiques communes. Ainsi deux zones enrichies en terres rares lourdes ont pu être définies. Le tableau 10 résume les principales intersections en terres rares lourdes des Phase 1 et 2.

La première, qui sera nommé HREE-S, forme l'éponte sud de la ferrocarbonatite. Cette zone décamétrique est une carbonatite mixte composée à part généralement égale, de ferrocarbonatite, calciocarbonatite et silicocarbonatite. La minéralisation est très similaire en terme de granulométrie et de phase minéralisée à celle retrouvée dans la zone noyau à l'exception qu'elle présente un ratio d'enrichissement en terres rares moyenne et lourde (OTRML) sur terres rares totales (OTRT) autour de 12% plutôt que 3% pour la zone Noyau. De plus la zone HREE-S présente plusieurs intersections supérieures à 1% OTRT. La zone HREE-S a été intersectée par cinq (5) forages de la Phase 2, et trois (3) d'entre eux ont intersecté la zone dès les premiers mètres de forage. Parmi les meilleures intersections en terres rares lourdes notons le forage MVL-11-30 qui a titré 147 ppm Dy<sub>2</sub>O<sub>3</sub> et 101 ppm Eu<sub>2</sub>O<sub>3</sub> sur 57,50 mètres incluant 518 ppm Dy<sub>2</sub>O<sub>3</sub>, 231 ppm Eu<sub>2</sub>O<sub>3</sub> et 111 Tb<sub>2</sub>O<sub>3</sub> sur 2,0 mètres et le forage MVL-11-36 qui a titré 108 ppm Dy<sub>2</sub>O<sub>3</sub> sur 36,0 mètres. L'exploration de la zone HREE-S sera le mandat de la Phase 3.

La deuxième zone enrichie en terres rares lourdes a été définie par 6 forages de la Phase 1 et 2. Elle se situe dans le secteur Nord-Ouest de la ferrocarbonatite et se caractérise par la présence de brèches et de pseudobrèches dont la matrice est riche en minéraux phosphatés (apatite et trace de monazite). Ces brèches se retrouvent principalement dans la silicocarbonatite encaissante et elles recoupent toutes les unités de carbonatites. Toutefois, en plusieurs endroits une relation avec les unités de calciocarbonatite primaire est observée. La minéralisation de cette zone est aussi principalement composée de fluorocarbonates, mais leur granulométrie diminue à moins de 50µm (moyenne de 100 à 500 µm dans la ferrocarbonatite) et se retrouve autant dans la gangue qu'en très fines inclusions dans l'apatite (Nadeau et Jébrak, 2013¹). Le ratio OTRML/OTRT de cette zone est de l'ordre de 20%, mais la concentration est généralement inférieure à 1% OTRT. Le forage MVL-11-42 est notable par la puissance de la minéralisation intersectée, mais selon l'interprétation géologique il aurait recoupé la zone de brèche à



un très faible angle. Il a titré 100 ppm Dy203 sur 197,50 mètres. Le forage MVL-11-09 a aussi intersecté 17,10 mètres de niveau bréchique qui a titré 210 ppm Dy $_2$ 0 $_3$  et 117 ppm Eu $_2$ 0 $_3$ .

D'autres forages ont aussi intersectés des secteurs à terres rares lourdes, mais dans plusieurs cas ce sont des forages isolés et le manque de suivi ne permet pas la définition de zones distinctes.

Table 10 : Résumé des principales intersections minéralisées en terres rares lourdes des campagnes Phase 1 et 2.

| Zone              | No de forage | Section | De (m) | À (m)  | Longueur <sup>(1)</sup><br>(m) | OTRT <sup>(2)</sup><br>(%) | Nd203<br>(%) | Dy203<br>(ppm) | Eu203<br>(ppm) | Tb203<br>(ppm) | OTRML<br>/ OTRT | P205<br>(%) |
|-------------------|--------------|---------|--------|--------|--------------------------------|----------------------------|--------------|----------------|----------------|----------------|-----------------|-------------|
|                   | MVL-11-21    | 7+25W   | 218,10 | 228,50 | 10,40                          | 0,70                       | 0,13         | 92             | 41             | 12             | 8,6%            | 0,45        |
|                   | MVL-11-23    | 7+25W   | 31,50  | 64,50  | 33,00                          | 1,17                       | 0,19         | 98             | 79             | 22             | 8,5%            | 0,06        |
| Sud <i>(Phase</i> |              | 6+80W   | 108,00 | 165,50 | 57,50                          | 1,00                       | 0,19         | 147            | 101            | 34             | 14,3%           | 0,26        |
| 2)                | MVL-11-30    | incl.   | 131,90 | 144,20 | 12,30                          | 1,42                       | 0,27         | 261            | 153            | 58             | 16,8%           | 0,08        |
| 2/                |              | incl.   | 136,65 | 138,65 | 2,00                           | 1,97                       | 0,39         | 518            | 231            | 111            | 21,1%           | -           |
|                   | MVL-11-36    | 6+80W   | 66,00  | 102,00 | 36,00                          | 0,85                       | 0,15         | 108            | 82             | 25             | 12,6%           | 0,10        |
|                   | MVL-12-59b   | 6+80W   | 35,90  | 51,00  | 15,10                          | 0,99                       | 0,15         | 101            | 72             | 23             | 10,4%           | 0,02        |
|                   | MVL-11-09    | 7+25W   | 366,75 | 378,65 | 11,90                          | 0,80                       | 0,15         | 115            | 79             | 23             | 16,0%           | 8,80        |
|                   |              |         | 460,90 | 478,00 | 17,10                          | 0,74                       | 0,15         | 210            | 117            | 41             | 28,0%           | 18,40       |
|                   | MVL-11-42    | 5+90W   | 264,50 | 462,00 | 197,50                         | 0,56                       | 0,10         | 100            | 54             | 18             | 18,3%           | 6,45        |
| Nord              | MVL-12-43    | 6+35W   | 397,50 | 414,00 | 16,50                          | 0,83                       | 0,18         | 166            | 124            | 39             | 21,0%           | 8,96        |
| (Phase 1<br>et 2) | MVL-12-45    | 6+35W   | 475,50 | 483,00 | 7,50                           | 0,92                       | 0,19         | 140            | 125            | 33             | 16,8%           | 7,45        |
| (12)              | MVL-12-46    | 5+45W   | 342,00 | 355,50 | 13,50                          | 0,53                       | 0,09         | 120            | 77             | 24             | 24,1%           | 8,90        |
|                   | MVI 12 17    | ( . 2FW | 409,50 | 424,50 | 15,00                          | 2,16                       | 0,30         | 127            | 124            | 30             | 6,9%            | 4,84        |
|                   | MVL-12-47    | 6+35W   | 595,50 | 604,50 | 9,00                           | 0,51                       | 0,08         | 115            | 67             | 23             | 23,5%           | 5,28        |
|                   | MVL-11-04A   | 2+00W   | 384,40 | 407,10 | 22,70                          | 0,37                       | 576          | 111            | 47             | 21             | 28,3%           | 6,85        |
|                   | MVL-11-28    | 4+00W   | 379,60 | 399,00 | 19,40                          | 0,81                       | 0,15         | 146            | 83             | 28             | 18,3%           | 6,21        |
| Exploration       | MVL-11-33b   | 3+00W   | 209,50 | 220,50 | 11,00                          | 1,16                       | 0,19         | 145            | 92             | 29             | 12,9%           | 6,05        |
|                   |              |         | 798,00 | 804,00 | 6,00                           | 1,26                       | 0,25         | 248            | 165            | 57             | 20,6%           | 19,11       |
|                   | MVL-12-56b   | 4+50W   | 210,00 | 218,30 | 8,30                           | 0,90                       | 0,15         | 153            | 87             | 30             | 17,2%           | 8,87        |
|                   | MVL-13-76    | Ouest   | 35,10  | 54,00  | 18,90                          | 0,43                       | 0,05         | 103            | 34             | 20             | 22,3%           | 1,85        |

#### 8.4 Phase 3 - Zone à terres rares lourdes "HREE-S"

Suite à la mise à jour de la zone HREE-S, une troisième campagne de forage fut réalisée aux mois de novembre et décembre 2013. Cette campagne avait essentiellement comme mandat, l'investigation des extensions est et ouest de la zone enrichie en terres rares lourdes ainsi que sa profondeur. Six (6) forages ont été planifiés avec un azimut à 150°N et un (1) avec un azimut à 190°N. La plongée était de -55°. Les collets des forages ont été positionnés dans la ferrocarbonatite et après avoir intersecté quelques niveaux décamétriques de silicocarbonatite, les forages ont intersecté la zone de carbonatite mixte, tel que décrit précédemment, pour se terminer dans la silicocarbonatite encaissante. La figure 7, montre la position des forages et des lithologies intersectées.



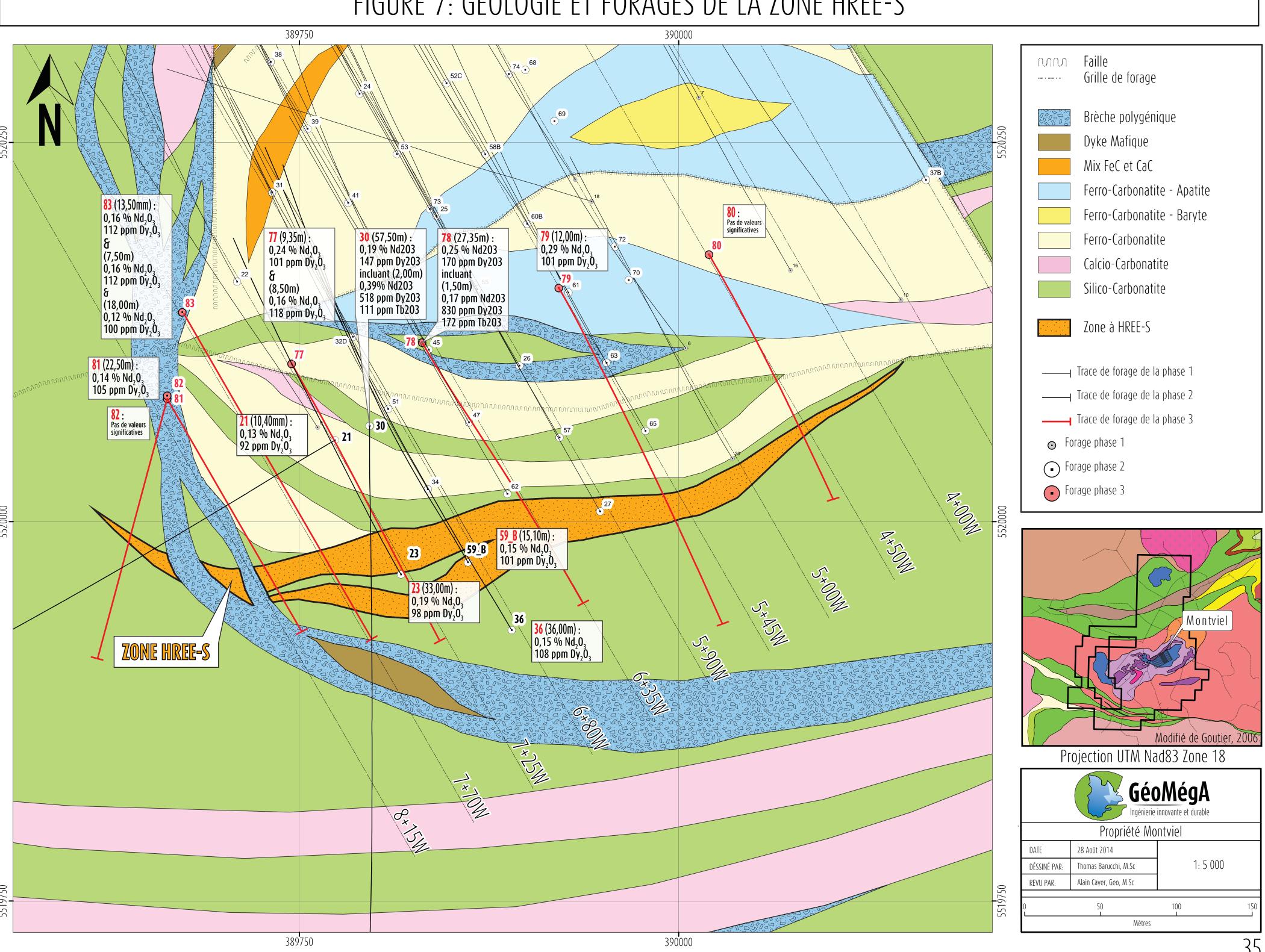
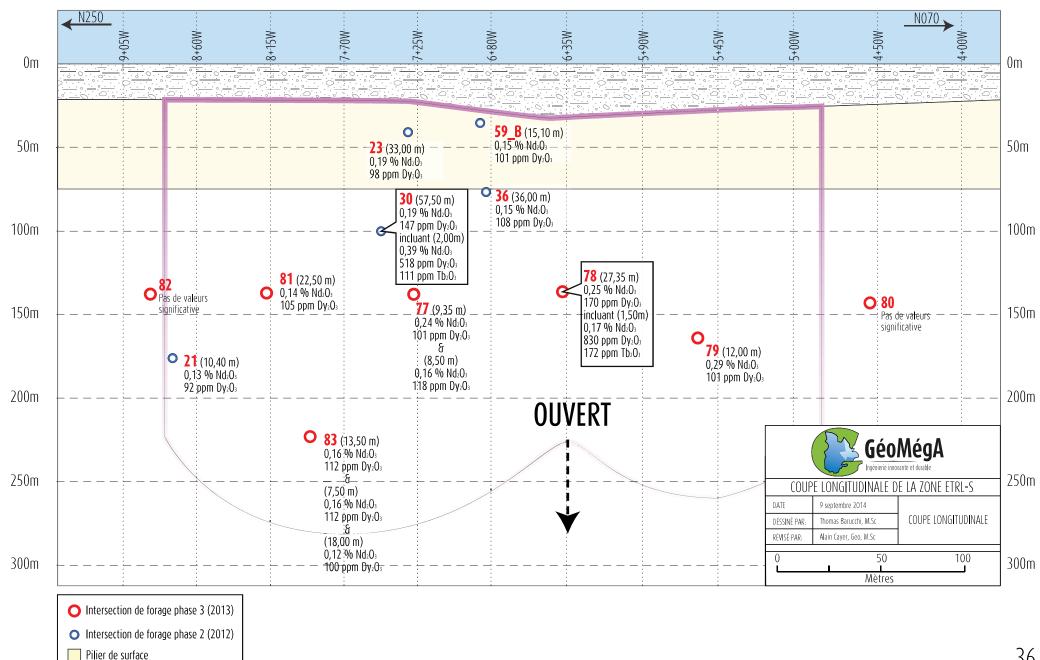

Des sept (7) forages qui ont été réalisés, cinq (5) ont intersecté la zone sur 350 mètres (est-ouest) et jusqu'à une profondeur de 230 mètres. Deux forages MVL-13-80 et 82 ont été forés aux extrémités de la zone. Le tableau 11 résume les intersections en terres rares lourdes des forages de la Phase 3 et la coupe longitudinale de la zone est présentée à la figure 8. Parmi les meilleures intersections, notons celles du forage MVL-13-78 qui a titré 170 ppm Dy<sub>2</sub>O<sub>3</sub> et 118 ppm Eu<sub>2</sub>O<sub>3</sub> sur 27,35 mètres incluant 830 ppm Dy<sub>2</sub>O<sub>3</sub>, 230 ppm Eu<sub>2</sub>O<sub>3</sub> et 172 ppm Tb2O3 sur 1,50 mètre. Le forage MVL-13-83, qui est le plus profond, diffère des autres par ces trois intersections décamétriques. Ces trois intersections sont probablement une seule zone recoupée de deux dykes de silicocarbonatite.

Table 11 : Résumé des intersections minéralisées en terres rares lourdes de la campagne de forage Phase 3.


| Zone                | No. Forage | Section | De     | À      | Longueur <sup>(1)</sup><br>(m) | OTRT <sup>(2)</sup><br>(%) | Nd203<br>(%) | Dy203<br>(ppm) | Eu203<br>(ppm) | Tb203<br>(ppm) | OTRML<br>/ OTRT | P205<br>(%) |
|---------------------|------------|---------|--------|--------|--------------------------------|----------------------------|--------------|----------------|----------------|----------------|-----------------|-------------|
| Sud<br>(Phase<br>3) | MVL-13-77  | 7+25W   | 172,50 | 181,85 | 9,35                           | 1,13                       | 0,24         | 101            | 103            | 28             | 10,5%           | 0,33        |
|                     |            |         | 196,60 | 205,10 | 8,50                           | 0,85                       | 0,16         | 118            | 85             | 30             | 13,0%           | 0,53        |
|                     | MVL-13-78  | 6+35W   | 180,00 | 207,35 | 27,35                          | 1,43                       | 0,25         | 170            | 118            | 40             | 11,7%           | 0,09        |
|                     |            | incl.   | 183,00 | 190,50 | 7,50                           | 2,38                       | 0,47         | 384            | 242            | 90             | 14,8%           | 0,02        |
|                     |            | incl.   | 183,00 | 184,50 | 1,50                           | 1,14                       | 0,17         | 830            | 230            | 172            | 48,4%           | 0,02        |
|                     | MVL-13-79  | 5+45W   | 231,00 | 243,00 | 12,00                          | 1,85                       | 0,29         | 101            | 129            | 25             | 7,7%            | 0,16        |
|                     | MVL-13-81  | 8+15W   | 186,00 | 208,50 | 22,50                          | 0,69                       | 0,14         | 105            | 77             | 24             | 16,6%           | 1,17        |
|                     | MVL-13-83  | 7+70W   | 240,00 | 253,50 | 13,50                          | 0,76                       | 0,16         | 112            | 87             | 28             | 15,3%           | 0,49        |
|                     |            |         | 259,50 | 267,00 | 7,50                           | 0,66                       | 0,16         | 112            | 75             | 28             | 16,4%           | 0,83        |
|                     |            |         | 282,00 | 300,00 | 18,00                          | 0,55                       | 0,12         | 100            | 74             | 25             | 16,5%           | 0,25        |



# FIGURE 7: GÉOLOGIE ET FORAGES DE LA ZONE HREE-S



## FIGURE 8: COUPE LONGITUDINALE DE LA ZONE HREES



#### 9. Méthode d'échantillonnage, d'analyse et vérification

Tous les forages de la Phase 2 ont été échantillonnés systématiquement du début à la fin, puisque l'exploitation par fosse à ciel ouvert était envisagée. Avant le début de la Phase 3, la décision d'adopter une méthode d'exploitation souterraine s'est prise. Conséquemment la modélisation d'un pilier de surface a motivé la décision de fixé le début de l'échantillonnage à approximativement 80 mètres vertical sous la surface (30 mètres de dépôt meubles et 50 mètres de pilier de surface). Donc pour les forages MVL-13-77 à 83, l'échantillonnage s'est fait à partir 114 mètres (80 mètres vertical) jusqu'à la fin du forage.

Lors de la réception des boites de carottes, le géologue à l'aide d'un technicien, place les boites séquentiellement et en vérifie le métrage. Par la suite des photos sont prises par assemblage de 5 boites avec un écriteau indiquant le numéro de forage, ainsi que le métrage du début de la première boite et de la fin de 5e boite. Le géologue procède à la description géologique et géotechnique dans le journal de sondage (base de données Access) et indique à l'aide de crayons de cire rouge, les intervalles à échantillonner. L'intervalle d'échantillonnage est généralement de 1,50 mètre, mais peut varier en fonction des contacts géologiques, des patrons d'altération ou de minéralisation. Une fois terminé, le géologue place deux étiquettes d'analyses ayant le même numéro au début de chaque échantillon à prélever. Ce numéro unique et son métrage seront inclus dans les journaux de sondage. Sur une des étiquettes, il identifie le métrage à échantillonner. Ce dernier sera broché dans la boite au début de l'échantillon par le technicien lors de l'échantillonnage. L'autre est conservé vierge pour l'envoi au laboratoire. Les boites de carottes sont maintenant transférées séquentiellement dans le local à échantillonnage. Chaque échantillon de carotte est scié en deux et une moitié est placée dans la boite de carotte comme témoin, l'autre est emballé individuellement avec l'étiquette numérotée correspondante, dans un sac de plastique transparent sur lequel le même numéro d'étiquette correspondant est inscrit au feutre noir. Une fois le sac agrafé et scellé, il est placé séquentiellement dans des poches de plastique tressé. Ces poches, contenant un maximum de 8 échantillons, sont aussi numérotées séquentiellement et entreposés dans le local. Lorsque le forage est complété, le bordereau d'envoi des échantillons du forage, avec les indications des méthodes analytiques, est préparé par le géologue et placé dans la première poche. Les poches sont mis sur une palette de bois, enveloppé à l'aide de film plastique et envoyé par une compagnie de transport au laboratoire ALS Chemex de Val-d'Or, Québec où ils seront préparés et envoyés au laboratoire ALS Global de Vancouver, aux fins d'analyses.

Un échantillon en blanc (« blank »), un duplicata et un standard pour les terres rares ont été insérés à tous les 50 échantillons; cela équivaut à 6 % des analyses qui sont destinées au contrôle de qualité (QA/QC). Les échantillons de contrôle stériles et les standards sont généralement insérés à des intervalles fixes et correspondent aux numéros d'analyses se terminant par 00, 25, 50, 75. Le protocole Géoméga indique que les doublons sont choisis parmi les intervalles fortement minéralisés et représentent ¼ de portion la carotte fendue (« quarter split »).

La préparation des échantillons a été réalisée selon la méthode « Prep- 31 » de ALS: les échantillons sont séchés, puis broyés à 70 % passant 10 mailles Tyler (2 mm). Un sous-échantillon de 250 g est ensuite pulvérisé à 85 % et tamisé à 200 mailles Tyler (75 microns). Le matériel nécessaire à la préparation est nettoyé avec une solution de lavage stérile entre les lots de préparation des échantillons et, le cas échéant, entre les échantillons fortement minéralisés. Les stations de préparation des échantillons sont également équipées d'installations d'extraction de poussières afin de réduire le risque de contamination de l'échantillon.

ALS Global a réalisé toutes les analyses dans leur laboratoire de Vancouver. Trente et un éléments (incluant les terres rares et les éléments traces) ont été analysés par ICP-MS après une fusion au borate de lithium et digestion à l'acide (méthode ME-MS81). Les éléments majeurs ont été analysés par ICP-AES après fusion au métaborate de lithium (ME-ICP06), et le niobium



par XRF (XRF05, ou XRF10 lorsque [Nb] > 1%). Tous les laboratoires d'ALS Minerals sont certifiés ISO 9001: 2000 pour la « fourniture d'analyses et de services d'analyse géochimique " par BSI Quality Registrars.

La certification ISO 9001 : 2000 exige la preuve d'un système de gestion de la qualité couvrant tous les aspects de l'organisation. ALS Minerals détient un certificat démontrant son succès dans le programme d'analyse des terres rares. Tous les échantillons reçus par ALS Minerals sont traités par un système de suivi d'échantillon qui est une partie intégrante du système de gestion de l'information de laboratoire de cette société (LIMS). Ce système utilise un codage à barres et une technologie de balayage qui fournissent des dossiers complets de chaîne de traçabilité pour chaque étape de la préparation de l'échantillon et du processus analytique. Ainsi, on limite les erreurs de numérotation et les erreurs de transcription.

#### 10. Interprétation et conclusion

Depuis sa découverte par Géoméga en 2010, la ferrocarbonatite, qui fut intersectée pour la première fois lors de la Phase 1, n'a cessé de révéler d'importante minéralisation en terres rares. La mise à jour, en Phase 2, de la zone "Noyau" et des deux zones à terres rares lourdes, s'ajoute aux découvertes et démontre que le système minéralisateur est puissant et localement intense.

La zone Noyau a été définie sur 150 mètres est-ouest et 400 mètres nord-sud, par une maille de forage au 45 mètres. Elle présente les meilleures intersections en oxydes de terres rares et en oxyde de niobium. Elle présente des lithologies et patrons d'altération plus développées que dans le secteur Est. La minéralisation est dominée par des fluorocarbonates de terres rares, qui seraient issus de l'altération de carbonate de terres rares. La campagne a aussi démontré que le système minéralisateur atteint une profondeur supérieure à 770 mètres vertical. Non seulement le mandat original a été rempli avec succès, mais la campagne de forage Phase 2 a aussi permis de mettre à jour deux zones enrichies en terres rares lourdes, dont une (HREE-S) sera définie lors de la Phase 3.

La campagne de forage de la Phase 3, a permis de définir la zone HREE-S sur 350 mètres latéral (est-ouest), par 230 mètres vertical avec une puissance réelle approximative de 20 mètres. Cinq (5) des sept (7) forages planifiés ont intersecté une zone décamétrique à plus de 100 ppm  $Dy_2O_3$ . La minéralisation est très similaire à celle rencontrée dans la zone Noyau, mais avec un ratio OTRML/OTRT de plus de 12% comparativement à 3% pour la ferrocarbonatite. La zone HREE-S forme l'éponte sud de la ferrocarbonatite, elle est toujours ouverte en profondeur.

De plus, plusieurs intersections isolées en OTRML, dont une située à plus de 800 mètres à l'ouest de la zone Noyau, démontre le potentiel important pour les terres rares lourdes de la carbonatite de Montviel, ainsi que pour l'intrusion alcaline de Montviel.

La première estimation des ressources réalisées à l'aide des 20 premiers forages (Phase 1) a démontré l'importante minéralisation en terres rares contenues dans la carbonatite de Montviel (Deshanais, 2011). L'estimation a été établie selon une méthode d'exploitation à ciel ouvert avec une teneur de coupure à 1% OTRT. Une nouvelle estimation des ressources est en cours, et prendra en compte la mise à jour de la zone Noyau ainsi que le changement vers une exploitation souterraine et la sélection d'éléments de terres rares spécifiques. Elle nous fournira, dans les prochains mois, une mise à jour sans doute bonifiée des ressources présentes dans la carbonatite de Montviel.



#### 11. Recommandation

En ce qui concerne l'exploration géologique, plusieurs travaux sont suggérés tant à l'échelle de la propriété que celle du secteur central.

- La méthode d'exploitation souterraine permettrait l'exploitation de zones de quelques dizaines de mètres qui sont fortement enrichis. En ce sens la définition à une maille réduite de 50m et l'investigation en profondeur des deux zones à terres rares lourdes, et plus particulièrement la HREE-S serait importante afin que l'on puisse y définir des ressources.
- Le suivi des intersections isolées, minéralisées en terres rares lourdes qui se retrouve en périphérie de la ferrocarbonatite est suggéré. Plusieurs intersections, dont celle du forage MVL-13-04a (111 ppm Dy<sub>2</sub>O<sub>3</sub>/22,70 m), se retrouvent dans une zone bréchique similaire à celle du secteur Nord-Ouest, un seul forage est présent dans ce secteur.
- Le contact de la ferrocarbonatite avec la silicocarbonatite encaissante dans le secteur Est et Nord-Est n'a jamais été investigué et l'extension de la ferrocarbonatite est inconnue. Par analogie avec le contact sud-ouest qui est à proximité de la zone Noyau, ce secteur est une cible d'exploration évidente.
- Finalement, il est suggéré de poursuivre l'investigation de l'intrusif alcalin. En de multiples endroits la présence de dépôt meuble rend très difficile la reconnaissance géologique par des méthodes directes. L'utilisation de méthode indirecte comme la lithogéochimie (horizon B ou MMI), les levés de tills, la géophysique et le forage seraient utiles. Le forage MVL-13-76, à 800 mètres à l'ouest de la ferrocarbonatite, a titré 103 ppm Dy<sub>2</sub>O<sub>3</sub> sur 18,90 mètres démontrent bien que le potentiel pour de nouvelles découvertes dans l'intrusif est important.



## 12. Signatures

ALAIN CAYER # 569
Alain Cayer, MSc., P. Geo., OGQ #569

QUEBEC

Mia Pelletier, MSc., Geo., OGQ #1405

#### 13. Références

Barker, A. L., 1975. Summary of exploration work, Montviel township claims, Abitibi-Est district, Qc. GM 31071, 133 pages.

Beland, S., 1989. Rapport d'évaluation de la propriété Montviel, canton de Montviel, Québec., pour Corona Corporation. GM 48820.

Belzile, E., 2009. NI 43-101 Technical Report for Niobec Mine, Qc, Canada. Prepared for IAMGOLD Corp. P.104

Birkett, T.C., 1979, Quebec Reconnaissance – The MOntviel township carbonatite complex – N.T.S. 32F/15,16. GM 39043, 7 pages.

Boileau, P., 2002. Leve électromagnétique (EMH), effectue sur le projet Montviel (blocs A et B), canton de Montviel, province de Québec (SNRC 32F/15) pour Ressources Nomans inc., GM 59646.

Boileau, P., 2004. Resultats des levés magnétiques héliportés effectués sur le projet Waswanipi- Goeland (blocs Niogold 1 a 11), cantons de Ailly, Duchesne, Duplessis, Meulande, Montviel, Ruette et Urfe, région du nord du Québec (32F/07, 32F/08, 32F/10, 32F/15), pour Corporation Miniere Niogold. GM 60881.

Corbeil, R.; Villeneuve D., 1994. Rapport sur les travaux d'exploration effectués sur l'ensemble des propriétés du projet Diamant II, Région Miquelon et Matagami. Ministère des Ressources Naturelles. GM 52874, 336 pages, 28 cartes.

David, J.; Dion, C.; Goutier, J.; Roy, P.; Bandyayera, D.; Legault, M.; Rhéaume P., 2006. Datations U-Pb effectuées dans la Sous-province de l'Abitibi à la suite des travaux de 2004-2005. Ministère des Ressources Naturelles et de la Faune. RP 2006-04, 22 pages.

De Corta, H., 2000. Summary of evaluation report on the Montviel property., Montviel township 32F/15, Abitibi, Quebec, Canada, for Nomans Resources inc. (provided by Niogold)

De Corta, H.; Berthelot, P., 2001. La Carbonatite de Montviel, rapport d'évaluation, canton de Montviel, Abitibi, Québec. GM 59681.

De Corta,H.; Berthelot, P., 2002. Rapport d'une campagne de sondages (subvention 2001-B-306) Propriete Montviel Ressources Nomans inc., canton Montviel, 32F/15, Abitibi, Québec. GM 59647

Desaulniers, E., 2011. Prospectair Geosurveys, ED Geophysique, Technical Report, Heliborne magnetic and spectrometric survey, Montviel property, Qc- Prepared for Ressources Geomega inc. 28pp. GM 66602

Desharnais, G., 2005. Geochemical and Isotopic Investigation of Magmatism in the Fox River Belt: Tectonic and Economic Implications. Doctoral Thesis, University of Manitoba.

Desharnais, G.; Duplessis, C., 2011, Montviel Noyau Zone REE mineral resources estimate technical report, Québec, prepared for Geomega Resources Inc. by SGS Canada Inc. 2011, Sept 29. 74pp

Dumont, P., 1978, Propriété Montviel, Rapport sur les sondages 77-1 a 77-8, Mars a Juin 1977. GM 00767, 299 pages.

Fournier, A., 2003. Rapport technique, projet Goeland-Waswanipi, pour Corporation Miniere Niogold. GM 60882.



Fournier, A., 2005. Rapport d'un programme d'échantillonnage MMI, proiet Goeland-Waswanipi, GM 61736.

Henriksen, G.H., 2006. Report on the geochemical orientation surveys, geological mapping, prospecting, and sampling program on the Montviel property of Niogold Mining Corporation in Montviel township, Quebec, NTS 32F/15 and 32F/16. Field season 2005. GM 62424.

Garnier, L.; Tremblay, J-F., 2012. NI 43-101 Technical report, Surface diamond drilling exploration program for rare earth elements, NIOBEC MINE PROPERTY. 184 pages. Publication en ligne : http://www.iamgold.com/files/EXPLORATION\_REE\_2012\_43-101\_pack.pdf

Gauthier, J.; Charbonneau, R.; Gauthier, M., 2011. Travaux d'exploration 2011 sur la propriété Montviel Nord, Canton de Montviel, Abitibi, Québec. GM 66395, 65 pages.

Gauthier, N., 1993. Rapport des travaux de terrain et de prospection, été-automne 1993 et proposition de forages. Projet diamant-Oasis. 125pp. GM 53155

Geospec Consultants Limited, 2004. Rb-Sr Isotopic analyses of phlogopite from Ailly Township kimberlite. Rapport déposé au ministère des Ressources Naturelles et de la Faune, GM 61309, 6 pages, 1 carte.

Goutier, J., 2006. Géologie de la région du Lac au Goeland (32F115). Geologie Quebec. RG2005-05

Groulier, P.A.; Ohnenstetter, D.; André, Mayer, A. S.; Solgadif, F.; Moukhsil, A.; Zeh, A., 2012. Photoprésentation Québec mine : Le système minéralisé en Nb-Ta-REE du gîte associé à l'intrusion alcaline de Crevier (Province de Grenville, Québec): nouvelles données cartographiques, minéralogiques, pétrographiques et géochimiques.

Huston, C.C.; Channing, M.W., 1958. Preliminary report on a Geo-Electrical investigation on Montviel township, Quebec. Jowsey Ltd. GM 07548-A

Imbeault, P.E., 1949. Rapport préliminaire sur la région de Maicasagi, compté Abitibi Est, Ministère des Mines. RP 231. 11 pages, 1 carte.

Jébrak, J.; Marcoux, E. 2008. Géologie des ressources minérales, Ministère des Ressources Naturelles et de la Faune.

Jowsey Ltd., Diamond drill reccord. GM07548-B

Marchand, K., 2011. Rapport de forage au diamant, sondages : MVL-10-01 et MVL-10-03, Propriete Montviel, Canton de Montviel et canton d Urfe, 32F115. Prepared for Geomega resources Inc. 2011 mars 09, 20pp.

Martel, S.; Cayer, A.; Pelletier, M., 2012. Technical Report and Recommendations - Winter 2012 Drilling campaign - Montviel (-Exploration) Property - Québec, Ressource sGéoméga inc. GM 66740, 326 pages

McNicoll, V.; Goutier, J., 2008: Trois datations U-Pb de la région du lac au Goeland, sous-province de l'Abitibi. RP 2008-02.

Moorhead, J.; Girard, R.; Boudreau, M.A., 1996. Anomalies aréomagnétiques circulaires possiblement reliées à des intrusions de kimberlite dans le nord-ouest quebecois. MB-93-49. 28pp.

Mulja, T., 2005: The mineralogy of samples from a rare earth element prospect and a base metal prospect for Niogold Mining Corp. GM 62438.



Nadeau, O.; Jébrak, M., mars 2013<sup>1</sup>. Étude de la minéralisation en terres rares lourdes de la carbonatite de Montviel, Abitibi. Ressources Géoméga Inc. Document interne.

Nadeau, O. ; Jébrak, M., avril 2013<sup>2</sup>. Étude de la minéralisation en terres rares de la zone de rampe, carbonatite de Montviel, Abitibi. Ressources Géoméga Inc. Document interne.

Roy, R., 2004. Technical report on the Montviel property, Quebec, Canada, for Niogold Mining Corporation. (provided by Niogold).

Richardson, D.G.; Birkett, T.C., 1996. Gites associées à des carbonatites in "Geologie des types de gites mineraux du Canada", rev. Eckstrand, W.D. Sinclair and R.I. Thorpe, Geological Survey of Canada, No 8, pp. 121-132.

Sauve, P., 1981. Programme Duval-Montviel (601-1380-16) Analyses semi-quantitatives des sondages 79-1 a 79-10, de la carbonatite de Montviel, canton Montviel, comte Ungava, SNRC 32F/15 et 16. SDBJ. GM 37295.

Stephens, M., 2003. Dighem survey, Mercier, Montviel and Belleterre areas, Fugro Airborne surveys, for Niogold Mining Corporation. GM 61778.

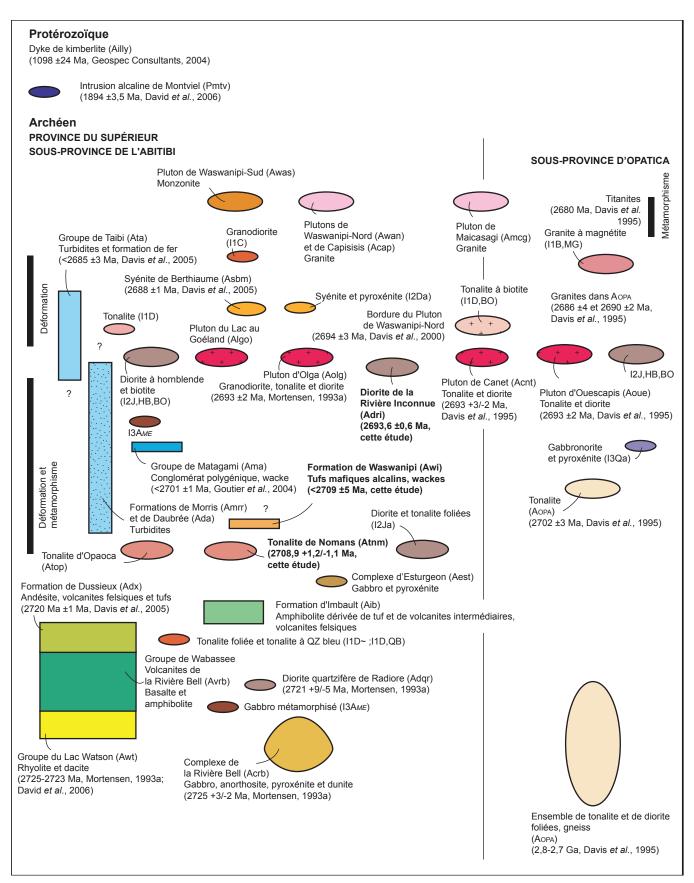
Tremblay, L., 2012. Étude pétrographique et minéralogique de 28 échantillons de sondage et analyses à la microsonde électronique sur des échantillons sélectionnés – Projet Montvel. Document interne.

Tremblay, L., 2014. Description pétrographique de 8 échantillons, projet Montviel. Produit par IOS pour le compte de Ressources Géoméga inc. Rapport interne.

Theberge, D., 2010. Ni 43-101 Technical Report Pertaining to: Montviel Property, Abitibi Area. Montviel Township, NTS 32F115, 32F116, March 23, 2010. Préparé pour Niogold Mining Corp. et soumit a Ressources Géoméga inc. 63pp.

Tshimbalanga, S., 2011. Levés géophysiques (gravimétrie et magnétométrie) au sol - Propriété Monvtiel - Canton Montviel - Abitibi - Région Lac au Goéland - Québec. Géosig. Inc. produit pour le compte de Ressources Géoméga inc. GM 65807, 16 pages.

Woolley, A. R., 1989. The spatial and temporal distribution of carbonatites. In: Bell K., editor. Carbonatites—Genesis and Evolution. London: Unwin Hyman. p. 15-37.


Wolley, A.R.; Kempe D.R.C., 1989. Carbonatites: nomenclature, average chemical compositions and element distribution. Carbonatite Genesis and evolution (K. Bell, editor). Unwin Hyman, London; page 1-14.



### Annexe I



## ANNEXE 1: LÉGENDE GÉOLOGIQUE DU SECTEUR LAC GOÉLAND (RP 2008-02)

